Rigged Contracts

Declarative Pearl

Alexander Vandenbroucke & Tom Schrijvers

Composing Contracts:
An Adventure Iin Financial Engineering

Functional pearl

Simon Peyton Jones
Microsoft Research, Cambridge
simonpj@microsoft.com

Abstract

Financial and insurance contracts do not sound like promis-
ing territory for functional programming and formal seman-
tics, but in fact we have discovered that insights from pro-
gramming languages bear directly on the complex subject
of describing and valuing a large class of contracts.

We introduce a combinator library that allows us to de-
scribe such contracts precisely, and a compositional denota-
tional semantics that says what such contracts are worth.
We sketch an implementation of our combinator library in
Haskell. Interestingly, lazy evaluation plays a crucial role.

1 Introduction

Consider the following financial contract, C: the right to
choose on 30 June 2000 between

D. Rath AF

Jean-Marc Eber
LexiF1 Technologies, Paris
jeanmarc.eber@lexifi.com

Julian Seward
University of Glasgow
v-sewardj@microsoft.com

At this point, any red-blooded functional programmer
should start to foam at the mouth, yelling “build a com-
binator library”. And indeed, that turns out to be not only
possible, but tremendously beneficial.

The finance industry has an enormous vocabulary of jargon
for typical combinations of financial contracts (swaps, fu-
tures, caps, floors, swaptions, spreads, straddles, captions,
European options, American options, ...the list goes on).
Treating each of these individually is like having a large
catalogue of prefabricated components. The trouble is that
someone will soon want a contract that is not in the cata-
logue.

If, instead, we could define each of these contracts using
a fixed, precisely-specified set of combinators, we would be
in a much better position than having a fixed catalogue.
For a start, it becomes much easier to describe new, unfore-
seen, contracts. Beyond that, we can systematically analyse,
and perform computations over these new contracts, because
they are described in terms of a fixed set of primitives.

MThoe maitinr thvriict af +hic nanor 1@ £ drawxr 1ineiohte framnm the

Composing Contracts

The right to, on June 15th, 2024, choose
between:

(a) the right to receive Y260 on July 26th,
2024, and pay ¥270 on August Ist, 2024; or
(b) the right to receive ¥3550 on July 26th,
2024, and pay ¥380 on August 1st, 2025.

X 100,000,000

What s this contract worth?

1mage source

: wikipedia

1.
2.

Contract Categories

Divide contracts into categories
Develop pricing models for each

1mage source

Contract Categories

1. Divide contracts into categories
2. Develop pricing models for each

American, European, Bermudan Options, Swap(tion)s, Futures,
Forwards, Butterfly swaps, knock-in, knock-out, reverse knock-in,
knock-out, ...

: wikipedia 5

Contract Categories

1. Divide contracts into categories
2. Develop pricing models for each

American, European, Bermudan Options, Swap(tion)s, Futures,
Forwards, Butterfly swaps, knock-in, knock-out, reverse knock-in,
knock-out, ...

7/ 545 . > >
=) Long exhaustive listin
& - i/ g

image source: wikipedia S

Contract Categories

1. Divide contracts into categories
2. Develop pricing models for each

American, European, Bermudan Options, Swap(tion)s, Futures,
Forwards, Butterfly swaps, knock-in, knock-out, reverse knock-in,
knock-out, ...

7/ 545 . > >
=) Long exhaustive listin
& - i/ g

xfBH\

) Still incomplete

image source: wikipedia S

Contract Combinators

zero one give and or
truncate then scale
get anytime

small set of primitive large universe of
combinators contracts

Simon L. Peyton Jones, Jean-Marc Eber, and Julian Seward. 2000. Composing contracts: an adventure in financial
engineering, functional pearl. In ICFP. ACM, 280-292.

Contract Combinators

large universe of
contracts

small set of primitive
combinators

compositional pricing contract pricing

Simon L. Peyton Jones, Jean-Marc Eber, and Julian Seward. 2000. Composing contracts: an adventure in financial
engineering, functional pearl. In ICFP. ACM, 280-292.

Rigged Contracts

The Zero-Coupon Bond

zcb :: Time — Double — Currency — Contract

zcb “21 May 2024” 100 JPY
A contract that pays ¥100 on the 21st of May 2024

The Zero-Coupon Bond

zcb :: Time — Double — Currency — Contract
zcb t a ¢ = scaleK a $ get $ truncate (t + 1) $ one c

10

The Zero-Coupon Bond

zcb :: Time — Double — Currency — Contract
zcb t a ¢ = scaleK a $ get $ truncate (t + 1) $ one c

receive one unit of ¢ now

10

The Zero-Coupon Bond

zcb :: Time — Double — Currency — Contract
zcb t a ¢ = scaleK a $ get $ truncate (t + 1) $ one c

receive one unit of ¢ now

trim the expiry date to (t+1)

10

The Zero-Coupon Bond

zcb :: Time — Double — Currency — Contract
zcb t a ¢ = scaleK a $ get $ truncate (t + 1) $ one c

receive one unit of ¢ now

trim the expiry date to (t+1)

Horizon Expiry date:
latest point in time at which 4% earliest point in time at which a
a contract can be acquired contract can no longer be acquired

10

The Zero-Coupon Bond

zcb :: Time — Double — Currency — Contract
zcb t a ¢ = scaleK a $ get $ truncate (t + 1) $ one c

receive one unit of ¢ now

trim the expiry date to (t+1)

you must obtain the contract right before it expires

11

The Zero-Coupon Bond

zcb :: Time — Double — Currency — Contract
zcb t a ¢ = scaleK a $ get $ truncate (t + 1) $ one c

receive one unit of ¢ now

trim the expiry date to (t+1)

you must obtain the contract right before it expires

scale all rights and obligations by a constant amount

11

Both

zchb “10 May 2024” 155 JPY “both™ give (zcb “10 Aug 2024” 100 USD)

1.acquire contracts on the left and right
2.before either has expired (i.e., “10 May 2024”)

12

Both

zchb “10 May 2024” 155 JPY “both™ give (zcb “10 Aug 2024” 100 USD)

reverse all rights and obligations, you must
pay 100 USD

1.acquire contracts on the left and right
2.before either has expired (i.e., “10 May 2024”)

12

Zero

zero both™ give (zcb “10 Aug 2024" 100 USD)

a contract that never expires and conveys neither rights nor obligations

= give (zcbhb “10 Aug 2024” 100 USD)

13

Zero

zero both™ give (zcb “10 Aug 2024" 100 USD)

a contract that never expires and conveys neither rights nor obligations

14

Zero

zero both™ give (zcb “10 Aug 2024" 100 USD)

a contract that never expires and conveys neither rights nor obligations

h .;, Py o .
‘both (give c) c¢ = truncate (expiry c) zero;
' 4 J

14

Or

zcb “10 May 2024” 155 JPY “or’ zcb “10 Aug 2024" 100 USD

1.acquire exactly one of the contracts on the left or right
2.before the respective contract has expired:
after 10 May 2024 you can no longer pick the left contract

15

Expired

expilred or zcb “10 Aug 2024" 100 USD

a contract that is always expired (expiry date = earliest possible date)

= zcb “10 Aug 2024" 100 USD

16

Expired

expilred or zcb “10 Aug 2024" 100 USD

|

a contract that is always expired (expiry date = earliest possible date)

17

Expired

expired or zcb “10 Aug 2024" 100 USD

|

a contract that is always expired (expiry date = earliest possible date)

. o TS e = y - V NG il = < - - s S .
RIS SO O BT PV RPN) B Y PITONO V. DT IW-2 N 2 P B TN)
o
o n' y
[] '
) {
!

!‘ R
/ /) %
D/ \
-9 R
21999 - o - - - - e 2 - - - " - - - - . - -~ \ b
, LTWTTES Y AW VS T 2N A WO ST Ach B La b SRR TS) S TE TRPET_Re e ® |

= 529 z . y > . - . o z - g . o =~ 3 . DNes .

A TTTEES R = 2 - : = L iz e A
VT T FINO Y . DT e P e N B o8 BTN DL
U
[J [
. /

Q
)

\

\

SRR RS AL QO L T X TR VI B P R P+ A T LU R T T e
- o - _ =~ 2 . N A = _ - - .

both expired

Annihilation!

17

And

zcb “10 May 2024" 155 JPY “and” give (zcb “10 Aug 2024"” 100 USD)

1.acquire contracts on the left and right
2.if either has expired that one can no longer be acquired

18

And

zcb “10 May 2024" 155 JPY “and” give (zcb “10 Aug 2024"” 100 USD)

1.acquire contracts on the left and right
2.if either has expired that one can no longer be acquired

while the contract on the left is not

expired, you acquire it, otherwise, you
acquire the contract on the right

18

And

zcb “10 May 2024" 155 JPY “and” give (zcb “10 Aug 2024"” 100 USD)

1.acquire contracts on the left and right
2.if either has expired that one can no longer be acquired

while c1 and c2 are both not expired, you

acquire both, otherwise, you acquire the
not yet expired contract

19

L.ess Ad-Hoc?

zero one give and or
truncate then scale
get anytime

20

L.ess Ad-Hoc?

zero one give and or
truncate then scale
get anytime

20

L.ess Ad-Hoc?

zero one give and or
truncate then scale
get anytime

20

L.ess Ad-Hoc?

zero one give and or
truncate then scale
get anytime

+ expilred

+ both

20

L.ess Ad-Hoc?

zero one give and or
truncate then scale
get anytime

+ expilred

+ both
- then
+ theregfter

L.ess Ad-Hoc?

zero one give and or

truncate then scale

get anytime

A. bothand or are associative
' and commutative

B. zeroand expired are resp.
_ identities

C. expired annihilates both
D. both distributes over or

21

- then

Semiring
These are the (Commutative) Semiring (Rig) Axioms!

Algebraic concepts are often useful when designing domain specific
languages: monoids, monads, groups, ...,

Examples: numbers, (commutative) matrices, tropical semirings,

derivatives, probabilities and expected values, booleans, Taylor
models, ...

22

Homomorphic Semantics

A mapping:

price : Contract — Semiring

preserving the semiring structure

24

Homomorphic Semantics

class Semiring r where

nil 1T — explred
unit :: r — Zero
plus @t r > r - r — or
times r - r - r — both
price expired nil
price zero unit

price cl1 plus price c2
price cl times price c2

price (or cl1 c2)
price (both cl1 c2)

25

Homomorphic Semantics

class Semiring r = Multiplicative r where
inv :: r > r — gilve

price (give c) = inv (price c)

26

price

price
price
price
price

price
price

price
price
price

c t | t = explry c =
/ero t = unit
(Both ¢c1 c2) t =
(Or c1 c2) t =
(Give c) t =
(Truncate t' c) t
(Thereafter c1 c2) t

(One curr)
(Get c)
(Anytime c)

t
t
t

nil

price cl t times price c2 t
price cl t plus price c2 t

inv (price c t)

27

price t c

t < explry cl = price cl t

otherwise

price c2 t

LXxpiry

A mapping:

explry : Contract — Time

preserving the semiring structure, where

Time = (N U {4+001},0, + 0o, min, max)

28

Pricing Semiring

Max Tropical

>(price c t :: Max Double) is the fair price at time t
»Captures original pricing semantics, but total!

instance Semiring (Max Double) where

nil = —00
unit = 0

plus = max
times = (+)

29

Pricing Semiring

ﬂ Gradient (Automatic Differentiation)

dx >(price ¢ t :: Gradient (Max Double)) is the fair

price at time t and the derivative of the price with respect to
one or more variables
>Derivatives are useful for optimisation, risk estimation, ...

And others...

Conclusion

Conclusion

¥More satisfactory, less ad-hoc combinators by
realising contracts form a semiring

€ Both is slightly more powerful than and

£Formulating semantics as semiring morphisms
points towards potential new applications

32

