
Alexander Vandenbroucke & Tom Schrijvers

Rigged Contracts
Declarative Pearl

1

Composing Contracts:
An Adventure in Financial Engineering

280

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICFP'00, Montreal, Canada.
Copyright 2000 ACM 1-58113-202-6/00/0009…$5.00.
ICFP'00,

Copyright 2000 ACM 1-58113-202-6/00/0009…$5.00.

2

Composing Contracts

The right to, on June 13th, 2024, choose
between:  
(a) the right to receive ¥260 on July 26th,
2024, and pay ¥270 on August 1st, 2024; or  
(b) the right to receive ¥350 on July 26th,
2024, and pay ¥380 on August 1st, 2025.

3

x 100,000,000

What is this contract worth?

4

Contract Categories

5

1. Divide contracts into categories

2. Develop pricing models for each

image source: wikipedia

Contract Categories

5

1. Divide contracts into categories

2. Develop pricing models for each

American, European, Bermudan Options, Swap(tion)s, Futures,
Forwards, Butterfly swaps, knock-in, knock-out, reverse knock-in,
knock-out, …

image source: wikipedia

Contract Categories

5

1. Divide contracts into categories

2. Develop pricing models for each

American, European, Bermudan Options, Swap(tion)s, Futures,
Forwards, Butterfly swaps, knock-in, knock-out, reverse knock-in,
knock-out, …

 Long exhaustive listing

image source: wikipedia

Contract Categories

5

1. Divide contracts into categories

2. Develop pricing models for each

American, European, Bermudan Options, Swap(tion)s, Futures,
Forwards, Butterfly swaps, knock-in, knock-out, reverse knock-in,
knock-out, …

 Long exhaustive listing

 Still incomplete

image source: wikipedia

Contract Combinators

6

zero one give and or
truncate then scale
get anytime

Simon L. Peyton Jones, Jean-Marc Eber, and Julian Seward. 2000. Composing contracts: an adventure in financial
engineering, functional pearl. In ICFP. ACM, 280–292.

small set of primitive
combinators

Simon L. Peyton Jones, Jean-Marc Eber, and Julian Seward. 2000. Composing contracts: an adventure in financial
engineering, functional pearl. In ICFP. ACM, 280–292.

small set of primitive
combinators

large universe of
contracts

Contract Combinators

7Simon L. Peyton Jones, Jean-Marc Eber, and Julian Seward. 2000. Composing contracts: an adventure in financial
engineering, functional pearl. In ICFP. ACM, 280–292.
Simon L. Peyton Jones, Jean-Marc Eber, and Julian Seward. 2000. Composing contracts: an adventure in financial
engineering, functional pearl. In ICFP. ACM, 280–292.

small set of primitive
combinators

large universe of
contracts

compositional pricing contract pricing

Rigged Contracts

8

The Zero-Coupon Bond

9

zcb :: Time -> Double -> Currency -> Contract

zcb “21 May 2024” 100 JPY

A contract that pays ¥100 on the 21st of May 2024

The Zero-Coupon Bond

10

zcb :: Time -> Double -> Currency -> Contract

zcb t a c = scaleK a $ get $ truncate (t + 1) $ one c

The Zero-Coupon Bond

10

zcb :: Time -> Double -> Currency -> Contract

zcb t a c = scaleK a $ get $ truncate (t + 1) $ one c

receive one unit of c now

The Zero-Coupon Bond

10

zcb :: Time -> Double -> Currency -> Contract

zcb t a c = scaleK a $ get $ truncate (t + 1) $ one c

receive one unit of c now

trim the expiry date to (t+1)

The Zero-Coupon Bond

10

zcb :: Time -> Double -> Currency -> Contract

zcb t a c = scaleK a $ get $ truncate (t + 1) $ one c

receive one unit of c now

trim the expiry date to (t+1)

Horizon

latest point in time at which
a contract can be acquired

Expiry date:

earliest point in time at which a
contract can no longer be acquired

The Zero-Coupon Bond

11

you must obtain the contract right before it expires

receive one unit of c now

trim the expiry date to (t+1)

zcb :: Time -> Double -> Currency -> Contract

zcb t a c = scaleK a $ get $ truncate (t + 1) $ one c

The Zero-Coupon Bond

11

you must obtain the contract right before it expires

scale all rights and obligations by a constant amount

receive one unit of c now

trim the expiry date to (t+1)

zcb :: Time -> Double -> Currency -> Contract

zcb t a c = scaleK a $ get $ truncate (t + 1) $ one c

Both

12

zcb “10 May 2024” 155 JPY `both` give (zcb “10 Aug 2024” 100 USD)

1.acquire contracts on the left and right

2.before either has expired (i.e., “10 May 2024”)

Both

12

zcb “10 May 2024” 155 JPY `both` give (zcb “10 Aug 2024” 100 USD)

reverse all rights and obligations, you must
pay 100 USD

1.acquire contracts on the left and right

2.before either has expired (i.e., “10 May 2024”)

Zero

13

zero `both` give (zcb “10 Aug 2024” 100 USD)

= give (zcb “10 Aug 2024” 100 USD)

a contract that never expires and conveys neither rights nor obligations

zero `both` give (zcb “10 Aug 2024” 100 USD)

Zero

14

a contract that never expires and conveys neither rights nor obligations

both zero c = c

zero `both` give (zcb “10 Aug 2024” 100 USD)

Zero

14

a contract that never expires and conveys neither rights nor obligations

both zero c = c

both (give c) c = truncate (expiry c) zero

Or

15

zcb “10 May 2024” 155 JPY `or` zcb “10 Aug 2024” 100 USD

1.acquire exactly one of the contracts on the left or right

2.before the respective contract has expired: 

after 10 May 2024 you can no longer pick the left contract

Expired

16

expired `or` zcb “10 Aug 2024” 100 USD

= zcb “10 Aug 2024” 100 USD
a contract that is always expired (expiry date = earliest possible date)

Expired

17

expired `or` zcb “10 Aug 2024” 100 USD

a contract that is always expired (expiry date = earliest possible date)

or expired c = c

Expired

17

expired `or` zcb “10 Aug 2024” 100 USD

a contract that is always expired (expiry date = earliest possible date)

or expired c = c

both expired c = expired

Annihilation!

And

18

zcb “10 May 2024” 155 JPY `and` give (zcb “10 Aug 2024” 100 USD)

1.acquire contracts on the left and right

2.if either has expired that one can no longer be acquired

And

18

and c1 c2 = both c1 c2 `thereafter` or c1 c2

while the contract on the left is not
expired, you acquire it, otherwise, you
acquire the contract on the right

zcb “10 May 2024” 155 JPY `and` give (zcb “10 Aug 2024” 100 USD)

1.acquire contracts on the left and right

2.if either has expired that one can no longer be acquired

And

19

and c1 c2 = both c1 c2 `thereafter` or c1 c2

while c1 and c2 are both not expired, you
acquire both, otherwise, you acquire the
not yet expired contract

zcb “10 May 2024” 155 JPY `and` give (zcb “10 Aug 2024” 100 USD)

1.acquire contracts on the left and right

2.if either has expired that one can no longer be acquired

Less Ad-Hoc?

20

zero one give and or
truncate then scale
get anytime

Less Ad-Hoc?

20

zero one give and or
truncate then scale
get anytime
-/+ truncate

Less Ad-Hoc?

20

zero one give and or
truncate then scale
get anytime

+ expired
-/+ truncate

Less Ad-Hoc?

20

zero one give and or
truncate then scale
get anytime

+ expired
-/+ and

 + both

-/+ truncate

Less Ad-Hoc?

20

zero one give and or
truncate then scale
get anytime

+ expired
-/+ and

 + both

-/+ truncate

- then

+ thereafter

- then

+ thereafter

Less Ad-Hoc?

21

zero one give and or
truncate then scale
get anytime

A. both and or are associative
and commutative

B. zero and expired are resp.
identities

C. expired annihilates both

D. both distributes over or

+ expired
-/+ and

 + both

-/+ truncate

Semiring

22

These are the (Commutative) Semiring (Rig) Axioms!

Algebraic concepts are often useful when designing domain specific
languages: monoids, monads, groups, …,

 
Examples: numbers, (commutative) matrices, tropical semirings,
derivatives, probabilities and expected values, booleans, Taylor
models, …

Pricing

23

Homomorphic Semantics

24

A mapping:

price : Contract -> Semiring

preserving the semiring structure

Homomorphic Semantics

25

class Semiring r where

nil :: r — expired

unit :: r — zero

plus :: r -> r -> r — or

times :: r -> r -> r — both

price expired = nil

price zero = unit

price (or c1 c2) = price c1 `plus` price c2

price (both c1 c2) = price c1 `times` price c2

Homomorphic Semantics

26

class Semiring r => Multiplicative r where

inv :: r -> r — give

price (give c) = inv (price c)

27

price c t | t >= expiry c = nil

price Zero t = unit

price (Both c1 c2) t = price c1 t `times` price c2 t

price (Or c1 c2) t = price c1 t `plus` price c2 t

price (Give c) t = inv (price c t)

price (Truncate t’ c) t = price t c

price (Thereafter c1 c2) t | t < expiry c1 = price c1 t

 | otherwise = price c2 t

price (One curr) t = …

price (Get c) t = …

price (Anytime c) t = …

Expiry

28

A mapping:

expiry : Contract -> Time

preserving the semiring structure, where

Time = (ℕ ∪ {+∞},0, + ∞, min, max)

Pricing Semiring

29

Max Tropical
(price c t :: Max Double) is the fair price at time t

Captures original pricing semantics, but total!

instance Semiring (Max Double) where

nil = -∞

unit = 0

plus = max

times = (+)

Pricing Semiring

30

d
dx

Gradient (Automatic Differentiation)
(price c t :: Gradient (Max Double)) is the fair
price at time t and the derivative of the price with respect to
one or more variables

Derivatives are useful for optimisation, risk estimation, …

And others …

Conclusion

31

Conclusion

32

¥More satisfactory, less ad-hoc combinators by
realising contracts form a semiring

€Both is slightly more powerful than and

£Formulating semantics as semiring morphisms
points towards potential new applications

