
Raytracing from first 
principles
Alexander Vandenbroucke



Raytracing



Raytracing

screen



Raytracing

screen

intersecting ray



Raytracing

screen

intersecting ray
= coloured pixel



Raytracing

screen

missing ray



Raytracing

screen

missing ray
= uncoloured pixel



Plane - Line intersection



Plane - Line Intersection

Line in the plane



Plane - Line Intersection

Line parallel to plane



Plane - Line Intersection

One Intersection

P

t



Plane - Line Intersection

t ↔ (x - x1)/u = (y - y1)/v = (z - z1)/w

A line through (x1,y1,z1), along (u,v,w)



Plane - Line Intersection

t ↔ (x - x1)/u = (y - y1)/v = (z - z1)/w

A line through (x1,y1,z1), along (u,v,w)

A plane through (x2,y2,z2), along u and 
v P ↔ ax + by + cz + d = 0 where

(a,b,c) = u ✖ v
            -d = ax2 + by2 + cz2



Plane - Line Intersection

t ↔ (x - x1)/u = (y - y1)/v = (z - z1)/w

A line through (x1,y1,z1), along (u,v,w)

P ↔ ax + by + cz + d = 0 where
(a,b,c) = u ✖ v

            -d = ax2 + by2 + cz2 cross product: the 
vector perpendicular 
to u and v

A plane through (x2,y2,z2), along u and 
v



Plane - Line Intersection

(x - x1)/u = (y - y1)/v = (z - z1)/w

ax + by + cz + d = 0

Now solve for x,y,z:

x = u(z - z1)/w + x1;  y = v(z - z1)/w + y1

ax + by + cz - d = 0

...

x = u(z - z1)/w + x1;  y = v(z - z1)/w + y1

z = (-d - ax1 - by1 + (α - c)z1) / α
α = (au + bv + cw) / w



Plane - Line Intersection

(x - x1)/u = (y - y1)/v = (z - z1)/w

ax + by + cz + d = 0

Now solve for x,y,z:

x = u(z - z1)/w + x1;  y = v(z - z1)/w + y1

ax + by + cz - d = 0

...

x = u(z - z1)/w + x1;  y = v(z - z1)/w + y1

z = (-d - ax1 - by1 + (α - c)z1) / α
α = (au + bv + cw) / w

α = (a,b,c) . (u,v,w) / w
   = normal . ray direction / w
 



Plane - Line Intersection

(x - x1)/u = (y - y1)/v = (z - z1)/w

ax + by + cz + d = 0

Now solve for x,y,z:

x = u(z - z1)/w + x1;  y = v(z - z1)/w + y1

ax + by + cz - d = 0

...

x = u(z - z1)/w + x1;  y = v(z - z1)/w + y1

z = (-d - ax1 - by1 + (α - c)z1) / α
α = (au + bv + cw) / w

α = (a,b,c) . (u,v,w) / w
   = normal . ray direction / w
   = 0
⇔ normal ⊥ ray direction



Ray - Rectangle intersection

(x1y1,z1)

w

h

P0

I



Ray - Rectangle intersection

w

h

P0

I

in the ray direction
(x1y1,z1)



Ray - Rectangle intersection

w

h

P0

I

i . (u,v,w) > 0

i



Ray - Rectangle intersection

w

h

P0

I

w'

h'

0 ≤ ||h'|| ≤ ||h|| and 0 ≤ ||w'|| ≤ ||w||



Ray - Rectangle intersection

w

h

P0

I

w'

h'

0 ≤ h' . h' ≤ h . h and 0 ≤ w' . w' ≤ w . w



Camera



Camera
height

width

d

(0,0,-d)

α

(0,0,0)

w = 1.0



Camera
height

width

d

(0,0,-d)

α

(0,0,0)

w = 1.0

tan (α/2) = (w/2)/d
⇔
d = (w/2) / tan(α/2)



Camera
height

width

d

(0,0,-d)

α

(0,0,0)

w = 1.0

h

d = w/2 / tan (α/2)

w / h = width / height

aspect 
ratio



Camera
height

width

d

(0,0,-d)

α

(0,0,0)

w = 1.0

h

d = w/2 / tan (α/2)

w / h = width / height
⇔
h = w / width * height



Camera
height

width

(0,0,-d)

w = 1.0

(X,Y)

h

(width/2,height/2)
(0,0,0)



Camera
height

width

(0,0,-d)

w = 1.0

(X,Y)
(x,y,0)

h

(width/2,height/2)
(0,0,0)

dX
xx = scalex * dX

scalex = w / width
dX = X - width/2



Camera
height

width

(0,0,-d)

w = 1.0

(X,Y)
(x,y,0)

h

(width/2,height/2)
(0,0,0)

dY
y

x = scalex * dX
scalex = w / width
dX = X - width/2

y = scaley * dY
scaley = h / height
dY = Y - height/2



Camera
height

width

(0,0,-d)

w = 1.0

(X,Y)
(x,y,0)

h

(width/2,height/2)
(0,0,0)

dY
y

x = scalex * dX
scalex = w / width
dX = X - width/2

y = scaley * dY
scaley = scaleX
dY = Y - height/2



Cube



Cube

(0,+s2,0)

(0,-s2,0)

(s,0,0)

(0,0,-s)



Cube

(0,0,-s2)

(0,0,+s2)

(s,0,0)

(0,s,0)



Cube

(+s2,0,0)

(-s2,0,0)

(0,0,-s)(0,s,0)



Diffuse Light



Diffuse Light

L
N



Diffuse Light

L
N



Diffuse Light

L
N

the shape casts a 
shadow



Diffuse Light

L
N

α

Color = Colorshape x cos α  x Ilight



Diffuse Light

L
N

α

Color = Colorshape x (N . L)  x Ilight

N . L = cos α / (||N|| x ||L||)



Extensions



Specular lights



Specular lights

Specular reflection
depends on the
point of view



Specular lights

also specular reflection, 
but with different 
parameters



Specular lights

diffuse = in all directions
specular = mostly in one 
direction



Triangles

Just like rectangles!



Triangles

Why should we care about triangles?



Triangles

There are 40+ triangles in this picture!



Triangles

There are 40+ triangles in this picture!



Parallelism

Compute lots of pixels in parallel: 
raytracing is almost perfectly 
parallelisable!



Parallelism

$ time dist/build/raytrace/raytrace +RTS -N1
8.47 real     8.36 user     0.05 sys
$ time dist/build/raytrace/raytrace +RTS -N4
3.78 real    11.29 user     0.09 sys

~ 2.24 speedup
 



Conclusion



Conclusion

★ We've build a raytracer

★ in an hour

★ in less than 300 lines

★ it's easily extendable



Conclusion

~ Fin ~

https://bitbucket.org/AlexanderV/raytrace



● what is raytracing
● Vectors (+,scalar,-,*,/,dot- and cross-product, L2 norm)
● Rays
● Shape

○ rectangle definition
○ intersection
○ color

● Camera
● Tracing
● combining shapes
● lights



Vectors



2D vectors

A
B

start point
end point

determine:
length + direction



2D vectors

A
B

C
AB + BC



2D vectors - Addition

A
B

2(AB)

-0.5(AB)



2D vectors - subtraction

A
B

C
AB + BC

AB - BC = AB + (-BC)



2D vectors - point vector

A

O

B

start point
end point

OA OB



2D vectors - point vector

A

O

B

start point
end point

A B



2D vectors - point vector

A

O

B

A B

B -A AB =  A + B - A

start point

length 
+ 

direction



2D vectors - point vector

A

O

B

A B

B -A AB =  A + B - A

point vector

point 
vector



2D vectors - point vector

O

B
y

x

yB

xB

= (xB,yB)

Final 
representation:



2D vectors

||(x,y)|| = √(x2 + y2)

length of the vector

(x,y) . (u,v) = x*u+y*v

cosine of the angle of the two 
vectors

euclidian norm inner product



3D vectors

euclidian norm

||(x,y,z)|| = √(x2 + y2 + z2)

length of the vector

inner product

(x,y,z) . (u,v,w) = x*u+y*v + z*w

cosine of the angle of the two 
vectors

outer product

(x,y,z) ✖ (u,v,w) = (p,q,r)
normal of two vectors



Rays


