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Abstract

Probabilistic Programming Languages (PPLs) sup-
port constructions to natively express probability
distributions, making it easier for researchers to de-
velop, share and reuse probabilistic models. They
have a long history in both the functional (e.g.,
Anglican) and logic programming (e.g., ProbLog)
paradigms. Unfortunately, these efforts have been
conducted mostly in isolation and little is known
about the relative merits of the two approaches, cre-
ating much confusion for the uninitiated.

In this work we establish a common ground for
both approaches in terms of algebraic models of
probabilistic computation. It is already well-known
that functional PPLs conform to the monadic
model. We show that ProbLog’s flavour of prob-
abilistic computation is restricted to the applicative
functor interface. This means that functional PPLs
afford greater expressiveness in terms of dynamic
program structure, while ProbLog programs are in-
herently more amenable to static analysis and thus
afford faster inference.

1 Introduction

Probabilistic Programming combines general purpose pro-
gramming and probabilistic modelling, making it easier for
researchers to develop, share their models. However, these
languages have been developed mostly in isolation, especially
along different paradigms, confusing their relative merits.

Functional PPLs such as Anglican [Tolpin et al., 2015]
hibit dynamic structure: a program’s structure can arbitrarily
depend on the value of a previous probabilistic choice.

On the other hand, an essential feature of the logic PPL
ProbLog [De Raedt and Kimmig, 2015; Fierens ef al., 2015]
is the separation of probabilistic facts from the program rules.
The structure of these rules is static, i.e. independent of the
values of the probabilistic facts. Moreover, ProbLog derives
much of its efficient exact and approximate inference from
this property: the invariance of the rules enables their compi-
lation to forms on which efficient inference (weighted model
counting) can be performed [Vlasselaer et al., 2016].

The functional programming community has recently con-
centrated on studying probabilistic programs in terms of mon-

ads [Scibior et al., 2015]. Monads are a natural choice, as
they capture—as algebraic structures—precisely those com-
putations that exhibit dynamic behaviour.

This begs the question whether a similar algebraic structure
exists which disallows dynamic program structure, and thus
accurately models the behaviour of ProbLog. Fortunately,
such a more restrictive class of algebraic structures indeed
exists: Applicative Functors [McBride and Paterson, 2008].
They restrict monads by not allowing the structure of the pro-
gram to depend on any previously computed value.
Contribution In this work we explain that any ProbLog
program, including advanced features such as conditioning,
can be transformed into a probabilistic applicative program,
and vice-versa. Then, ProbLog is exactly as powerful as ap-
plicative PPLs. This suggests a new avenue of optimisation
for the probabilistic inference of functional PPLs, by exploit-
ing the same knowledge compilation techniques that were de-
veloped for probabilistic logic programming languages, thus,
combining the expressivity of functional languages with the
performance of logical languages.

2 Main Idea
2.1 Probabilistic Logic Programming
Consider the following program written in ProbLog. It im-
plements a fair coin toss:

heads .

- not (heads) .
The clauses of the program can be divided into facts 7 and
rules R. In this particular case, 7 = {0.5 :: heads} and
R = {tails :- not (heads)}. Note that the rules R
are regular non-probabilistic Horn clauses.
Semantics of Probabilistic Logic Programs A fotal
choice C'is any subset of F. A fact f is said to be true (false)
in C if and only if f € C (f ¢ C). A total choice C and a
set of clauses R together form a conventional logic program.
We use P |= a to denote that program P logically entails an
atom a in the perfect model semanlxcs [Przymusinski, 1989].

Let F = {p, : f yeevsPn i fn}, then the probability of a

choice C' © F is given by I.he pmduct of the probabilities of
the true and false facts:

PO)= [] mx [ G-m)

:fieC pif;eR\C

with Tom Schrijvers
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What are PPLs

General Purpose Programming
Language
+
Probabilistic Modelling

Probabilistic Programming
Language

= easier communication
= more reuse



ProblLog



ProbLog

ProblLog

Logic Programming

4+

Probabilities

L. De Raedt and A. Kimmig. Probabilistic (logic) programming concepts.
Machine Learning, 100:1, pp. 5 - 47, Springer New York LLC, 2015.



Example - Flipping two coins

2

% Probabilistic facts:
9.5 :: headsl.
9.6 :: heads2.

% Rules:
\Eoneads : - headsl, heads2.

N

/
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Example - Flipping two coins

/%Probabilistic facts: ‘\\
9.5 :: headsl.
9.6 :: heads2.
% Rules:

\Eoneads : - headsl, heads2. %

query(headsl).
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Example - Flipping two coins

/%Probabilistic facts: ‘\\
9.5 :: headsl.
9.6 :: heads2.
% Rules:

\Eoneads : - headsl, heads2. %

query(headsl).
— 0.5 (50%)
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Example - Flipping two coins

/%Probabilistic facts: ‘\\
©.5 :: headsl.
0.6 :: heads?2.
% Rules:
\Eoneads : - headsl, heads2. #//
query(headsl). query (twoHeads).
— 0.5 (50%)
query(heads2).

— 0.6 (60%)
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Example - Flipping two coins

/%Probabilistic facts: ‘\\
©.5 :: headsl.
0.6 :: heads?2.
% Rules:

\Eoneads : - headsl, heads2. #//
query(headsl). query (twoHeads).
— 0.5 (50%) — 0.3 (30%)

query(heads2).

— 0.6 (60%)
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Example - Smokers




Example - Smokers

//;/;eterministic facts i\\\\

person(klara). person(george).
friend(klara,george). friend(george,klara).

% Probabilistic facts

Em EEE S IS DS S D S B B B B B B B B S DS B DS B B B e e B .

;e 1nf1uences(X Y) :- person(X),person(Y).

additional facts:

9.3 :: stress k. 0.3 :: stress g.

and rules:

stress(klara) :- stress _k, person(klara).
stress(george) :- stress g, person(george).
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Example - Smokers

//;/;eterministic facts

person(klara). person(george).
friend(klara,george). friend(george,klara).

% Probabilistic facts
:: stress(X) :- person(X).

%#Rules
smokes(X) :- stress(X).

smokes(X) :- friend(X,Y), influences(Y,X),
smokes(Y).

0.3
9.2 :: influences(X,Y) :- person(X),person(Y).

~

4
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Example - Smokers

//;/;eterministic facts

person(klara). person(george).
friend(klara,george). friend(george,klara).

% Probabilistic facts
:: stress(X) :- person(X).

%#Rules
smokes(X) :- stress(X).

smokes(X) :- friend(X,Y), influences(Y,X),
smokes(Y).

0.3
9.2 :: influences(X,Y) :- person(X),person(Y).

~

4

query(smokes(george)) — 0.342
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Semantics (1/2)

Facts
¥={0.5 :: headsl, 0.6 :: heads2}

Rules
® = { twoHeads :- headsl,heads2 }
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Semantics (1/2)

Facts
¥={0.5 :: headsl, 0.6 :: heads2}

Rules
® = { twoHeads :- headsl,heads2 }

Total Choice
CC ¢

forallf € F:

fe C=fistrue
f £ C = fis false
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Semantics (2/2)

Probability of a total choice

PC)=1p, ¥ II (1-p)

pi::fiEC p.::f € F\C

probability probability
of true facts of false facts
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Semantics (2/2)

Probability of a total choice

PC)=1p, ¥ II (1-p)

pi::fiEC p.::f € F\C
probability probability
of true facts of false facts

Probability of a query

Po(@ = X P(C)
CSFACUREQq

probability of all choices
that entail the query
25



Problem Statement



Problem Statement

Functional PPLs (Anglican)

(define (twoHeads)
(and (flip ©.5)
(flip 0.6))

[Tolpin et al. 2015]
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Problem Statement

Functional PPLs (Anglican)

(deflne (trall prob j)

(trail prob (+ j 1))))

\ recursion depends on flip
= structure depends dynamically on f1lip
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Problem Statement

Functional PPLs (Anglican)

(deflne (trall prob j)

(trail prob (+ j 1))))

\ recursion depends on flip
= structure depends dynamically on f1lip
= semantics requiring static R is useless
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Logic vs Functional

27?777

ProbLog = > Anglican

4

4

Static _ _ Dynamic
Rules Program



Logic vs Functional

27?777

ProbLog = > Anglican

4
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Spoiler Alert

ProbLog = > Anglican

4

$

Probabilistic
Applicative
Functor

Probability
g Monad



Consequences

ProbLog = > Anglican

4

4

Increased Increased
Efficiency VS  Flexibility
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Applicative Functor

Functor F

pure :A—F A
®:F(A—-B)—-FA—>FB

+

Laws

[McBride & Paterson]36



Applicative Functor

Functor F
T "computation”
containing an A
pure : A —F AL/

©:F(A—>B)—>FA—FB

Laws

[McBride & Paterson]37



Applicative Functor

Functor F

wrap value * "computation”
containing an A

[McBride & Paterson]



Applicative Functor

Functor F

wrap value * "computation”

\1 containing an A
‘pure: A —FA—

"apply" a functor with a
function (A — B) to a

functor containing a
value A Laws

[McBride & Paterson]39



Applicative Functor - Laws

identity

pure(id) @ u = u

composition
ue(vew)=pure(C)euevew

homomorphism
pure(f) ® pure(x) = pure(f x)

interchange
u ® pure(x) = pure(\f - f x) ® u
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Applicative Functor - Laws

identity Pull pure left
pure(id) @ u=u

composition
ue(vew)=pure(C)euevew

homomorphism
pure(f) ® pure(x) = pure(f x)

interchange
u ® pure(x) = pure(\f - f x) ® u
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Applicative Functor - Canonical Form

pure(f) ® (pure(g) ® a @ b)

composition
+

homomorphism

\/
pure(\ xy - f(gxy))eaeb
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Applicative Functor - Canonical Form

any applicative expression

laws

v

pure(f)ea, ®...®a_

Canonical Form
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Probabilistic Applicative Functor

Applicative Functor F

+

(.Y:A>[01]—>A->FA

Laws
[Gibbons & Hinze 2011] |



Probabilistic Applicative Functor

Applicative Functor F

(.Y:A>[01]—>A->FA

e Canonical form
e (.) behaves

like a probability

[Gibbons & Hinze 201 1]45



Probabilistic App. Fun. - Example

2

% Probabilistic facts: \\

9.5 :: headsl.

9.6 :: heads2. query (twoHeads).
% Rules:

\Eoneads : - headsl1, headsz.//
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Probabilistic App. Fun. - Example

2

% Probabilistic facts: \\
9.5 :: headsl.
0.6

i1 heads2. query (twoHeads).

% Rules:
\Eoneads : - headsl1, headsz.///

pure( ) © ® where

47



Probabilistic App. Fun. - Example

2

% P
5 :: headsl.
6

0.
9.6 :: heads2.

% Rules:

robabilistic facts: ‘\\

query (twoHeads).

\Eoneads : - headsl1, headsz.///

pure(
heads1
heads?2

) © headsl ©® heads2 where

True { ©.5 ) False
True ( 6.6 ) False
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Probabilistic App. Fun. - Example

% Probabilistic facts: \\\
9.5 :: headsl.
9.6 :: heads2.

2

query (twoHeads).

% Rules:
\Eoneads : - headsl1, headsz.///

pure(twoHeads) © headsl © heads2 where
headsl = True {( 0.5 ) False
heads2 = True {( 0.6 ) False
twoHeads = \hl h2 — hl && hZ2
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Probabilistic App. Fun. - Example

% Probabilistic facts: \\\
9.5 :: headsl.
9.6 :: heads2.

2

query (twoHeads).

% Rules:
\Eoneads : - headsl1, headsz.///

pure(twoHeads) © flip(0.5) © flip(0.6) where
twoHeads = \hl h2 — hl && h2
flip p = True {( p ) False
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Prob. App. Fun. - Formal Semantics

Big-step Relation

all v
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Prob. App. Fun. - Formal Semantics

Big-step Relation

S

W K

applicative resulting
program value
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Prob. App. Fun - Formal Semantics

Big-step Relation

\Ué/ trace
a @V\
weight
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Prob. App. Fun. - Formal Semantics

Big-step Relation

pure(v) ‘U’] Y



Prob. App. Fun. - Formal Semantics

Big-step Relation

t(p)fd b t



Prob. App. Fun. - Formal Semantics

Big-step Relation

t(p)fd b t

t(p)fUl f



Prob. App. Fun. - Formal Semantics

Big-step Relation

r++s
uo vy
<

a fga vl x8afx) =y



Prob. App. Fun - Formal Semantics

Big-step Relation

r++s
ao Uy
<

U s vl x8a =y



Formal Semantics - Associated Probability

—————————

————————
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Transformation



ProbLog — Prob. App.

2

7
0.
0.

P
5 ::
6

% Rules: |
Qoneads :- heads1, headsz./ facts — coin tosses

robabilistic facts: ‘\\
heads1.

:: heads2. query (twoHeads).

pure(twoHeads) © flip(@.5) © flip(©0.6) where
twoHeads = \hl h2 — hl && h2
flip p = True {( p ) False
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ProbLog — Prob. App.

/%Probabilistic facts: ﬁ\\
{6.5 .. heads1.
\9.6 - headsZ.J

query (twoHeads).

% Rules:
\Eoneads :- headsl, heads2.

facts — coin tosses

pure(twoHeads) © flip(6.5) @_fLip(9.6)]where

twoHeads = \hl h2 — hl && h2
flip p = True {( p ) False
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ProbLog — Prob. App.

/%Probabilistic facts: ﬁ\\
{6.5 .. heads1.
\9.6 - headsZ.J

query (twoHeads).

% Rules. |
r . facts — coin tosses

rules — pure
functions

- . - . . - - O S S S S S S S S S D e S e . .

twoHeads = \hl h2 — hl && h2
flip p = True {( p ) False
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ProbLog < Prob. App. - By Example

pure(<) © (1 ( @.5 ) 10) @ (2 {( 8.3 ) 5)
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ProbLog < Prob. App. - By Example

pure(<) © (1 ( @.5 ) 10) @ (2 {( 8.3 ) 5)
i pick = \x y b -> if b then x else y

pure(<) @ (pure (pick 1 10) © flLip(6.5))
® (pure (pick 2 5) @ flip(0.3))
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ProbLog < Prob. App. - By Example

pure(<) © (1 ( @.5 ) 10) @ (2 {( 8.3 ) 5)
i pick = \x y b -> if b then x else y

pure(<) @ (pure (pick 1 10) © flLip(6.5))
® (pure (pick 2 5) @ flip(0.3))
¢ canonicalise

pure(\bl b2 -> pick 1 106 bl < pick 2 5 b2)
® flip(0.5)
® flip(0.3)
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ProbLog < Prob. App. - By Example

pure(<) © (1 ( @.5 ) 10) @ (2 {( 8.3 ) 5)
i pick = \x y b -> if b then x else y

pure(<) @ (pure (pick 1 10) © flLip(6.5))
® (pure (pick 2 5) @ flip(0.3))

¢ canonicalise

pure(\bl b2 -> pick 1 106 bl < pick 2 5 b2)
® fLip(0.5)
® flip(6.3)

.5 :: factl. 0.3 :: fact2.

67



ProbLog < Prob. App. - By Example

pure(<) © (1 ( @.5 ) 10) @ (2 {( 8.3 ) 5)
i pick = \x y b -> if b then x else y

pure(<) @ (pure (pick 1 10) © flLip(6.5))
® (pure (pick 2 5) @ flip(0.3))

¢ canonicalise

® flip(o.5) O
o FLip(0.3) \ el B

—>
F F L1 F
.5 :: factl. 0.3 :: fact2.
T F T

68
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ProbLog < Prob. App. - By Example

pure(<) © (1 ( @.5 ) 10) @ (2 {( 8.3 ) 5)
i pick = \x y b -> if b then x else y

pure(<) @ (pure (pick 1 10) © flLip(6.5))
® (pure (pick 2 5) @ flip(0.3))

¢ canonicalise

® flip(o.5) O
o FLip(0.3) \ el B

1t :- factl, fact2. = g

|
—> :
F F L F
|
F T 1 F
0.5 :: factl. 0.3 :: fact2. f——— = =
1t :- factl, not(fact2). 1 TOFa T
|
l
|



Canonicalisation

weights
[y :FA—>RX - % R

pure rules
[l.llz: F A — (Bool — - — Bool — A)

canonical form
f = pure([|f]];) ® flip(w,) ® @ flip(w )
where (w,,....w_) = [[fl],

70



Conclusion

ProbLog — Prob. App.
ProbLog <« Prob. App.

Preserve Probabilities



Evidence



ProbLog evidence

/1;fProbabilistic facts:
0.5 ::
0.6 ::

<

headsl.
heads?2.

% Rules:
twoHeads

: - headsl, heads2.

»

4

query(twoHeads).

— 0.3
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ProbLog evidence

/1;7Probabilistic facts: \\\

9.5 :: headsl.
0.6 :: heads2.

% Rules:
twoHeads :- headsl, heads2.
evidence(headsl,true).

< 4

query(twoHeads).
— 0.6
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Prob. App. with Observations

Applicative Functor F

+

> FA— (A—Bool) > FA

Laws



Prob. App. with Observations - Laws

composition
(u»>p)>g=u~>(\xX—px&&qgx)

left interchange
(u>p)ev
pure(1,) @ ((pure(t) ® u ® v) » poTr, )
where
t=\f x — (f, x, f(x))
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Prob. App. with Observations - Laws

composition
(u»>p)>g=u~>»(\xX—px&&qgx)

left interchange
(u>p)ev
pure(t,) @ ((pure(t) ® u ® v) » poTr, )
where
t=\f x — (f, x, f(x))

Push - to the right
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Prob. App. with Observations - Laws

composition
(u»>p)>g=u~>(\XX—opx&&qgx)

left interchange
(u>p)ev
pure(1,) @ ((pure(t) ® u ® v) > poTr, )
where
t=\f x — (f, x, f(x))

= 3 Canonical Form
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ProbLog — Prob. App.

/;Probabilistic facts:

©.5 :: headsl.

0.6 :: heads2.

% Rules:

twoHeads :- headsl, heads2.
\evidence(heads1,true).

>

/

query (twoHeads).
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ProbLog — Prob. App.

/;Probabilistic facts: ﬁ\\
9.5 :: heads1. query (twoHeads).
0.6 :: heads2.

% Rules:
twoHeads :- headsl, heads2.
\evidence(heads1,true). -

pure(twoHeads) ©® headsl ® heads2 where
headsl = flip(0.5)
heads2 = flip(0.6)
twoHeads = \hl h2 -> hl & h2
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ProbLog — Prob. App.

/;Probabilistic facts: ﬁ\\
9.5 :: heads1. query (twoHeads).
0.6 :: heads2.

% Rules:
twoHeads :- headsl, heads2.
\evidence(heads1,true). -

pure(twoHeads) ® (headsl » id) ® heads2 where
headsl = flip(0.5)
heads2 = flip(0.6)
twoHeads = \hl h2 -> hl & h2
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ProbLog < Prob. App.

p : F Bool
* canonicalise
pure(f) © ((pure (,...,)eflip(wl)e...eflip(wn))

> 0obs)
'

//Qi ;. factl \\\

wn :: factn
truth table

f s -

LR {ryth table

\\Syidence(obs,true) /// .




Summary



% ProblLog is a Probabilistic Logic
Programming Language

% whose computational model is
probabilistic applicative functors

% with observations.

% as opposed to monadic computations
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Questions

... or just come talk to me.




Smokers Example

smoRes @ stressA @ stressG @ inflAG @® 1nflLGA where

stressA = flip(0.3)

stressG = flip(0.3)

inflAG = flip(0.2)

1fLGA = flip(0.2)

smokRes = \SA sG 1AG 1GA -> u smkR -> \p ->

1f p == amr then

sA || (smk george && 1iGA)

else
sG [| (smk amr && 1AG)
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