
DSLs

DSL
=

Domain Specific
Language

DSL Approach

1. develop a language

2. solve problems with that language

3.$$$

Types of DSLs

• Stand-alone DSL  
HTML, Verilog, SQL, YACC, GraphViz, ...

• Embedded DSL (EDSL)  
embedded in a host language like  
Haskell as library  
(but also in Scala, Groovy, …)

Geo-Server

Haskell vs. Ada vs. C++ vs. Awk vs. ...
An Experiment in Software Prototyping Productivity

Paul Hudak, Mark P. Jones

The Setup

• US Navy Experiment

• Study suitability of languages for rapid
prototyping

• Languages: Haskell, Ada, Ada9X, C++, Awk,
Rapide, Griffin, Proteus, Relational Lisp

• 1 expert programmer, small project

Problem

Object

Tracking

Geo-

Server

S

E

N

S

O

R

S

D

E

P

L

O

Y

M

E

N

T

radar,

antenna,

etc.

User Interface

Log

control of

response

measures

Figure 1: Simplified Aegis Weapons Systems Diagram

3. Imperative code was not rewritten “after the fact” in a functional language and then com-
pared to the original program. Nor were all of the programs written by the same person.
Instead, the problem statement was given to an expert programmer in each of several dif-
ferent programming languages.

4. Although difficult to compare, the metrics include the time it took each participant to create
his prototype. Short programs have their advantages, but if they take twice as long to
develop, the advantages may be nullified.

5. TheNSWCexperiment represents amilitary application and customer. Military applications
represent a large and critical use of software systems, and their correctness and reliability is
of obvious concern.1

3 Problem Description

Space limitations preclude our inclusion of the full problem specification. Wewill instead describe
it briefly, giving an example of its behavior, and refer the interested reader to reference [LBK 94]
for the full specification.

As mentioned earlier, the geo-server is just one part of a much larger system, as shown in
Figure 1. This diagram illustrates the essential role that the geo-server plays, although its over-
simplification does not give justice to the size and complexity of the other components.

1For those who object to this use of functional languages, we suggest reading the rest of this paper as if it were
about a video game. We do not intend this as a joke: video war games must have components in them similar to the
“geo-server” described in this paper, and video games are certainly an important commercial application.

4

Geo-Server Input
Slave Doctrine

Weapon Doctrine

Engageability

Zone
Hostile

Aircraft

Commercial

Aircraft

Tight Zone

Carrier

Aegis Ship

Figure 2: Geo-Server Input Data

commercial aircraft: (159.0,36.0)

-- In engageability zone

-- In tight zone

hostile craft: (148.0,73.0)

-- In carrier slave doctrine

Time 80.0:

commercial aircraft: (198.0,27.0)

-- In engageability zone

-- In carrier slave doctrine

-- In tight zone

hostile craft: (110.0,37.0)

-- In tight zone

And to get a feel for the potential of the geo-server, here is the output of an enhanced version
of the Haskell prototype, which satisfies several “extra credit options” posed in the original
specification (but whose development metrics are not included in this paper; see [CHJ93]):

Time 0.0:

commercial aircraft: (38.0,25.0) --> (0.0,0.0)

-- Currently in tight zone

hostile craft: (258.0,183.0) --> (0.0,0.0)

Time 20.0:

commercial aircraft: (58.0,30.0) --> (1.0,0.25)

-- Expected in weapon doctrine at t+131.3

-- Expected in engageability zone at t+52.5

-- Expected in missile range at t+52.5

6

Geo-Server Output

The input to the geo-server consists of data that conveys the positions of various ships, air-
planes, and other objects on the globe; the output consists of relationships between these objects
as computed by the geo-server. To gain some intuition about the functionality of the geo-server, it
is helpful to observe a typical input/output pattern. The input data is best conveyed using amap,
for example as shown in Figure 2. In this diagram:

1. Friendly ships – aircraft carriers, battleships, etc. – are represented as triangles. The geo-
server is expected to monitor the position/status of many such ships.

2. Surrounding each ship are several “zones” of interest: an engageability zone, an annulus
within which engagement with hostile craft is allowed; a weapon doctrine, a pie-shaped
region which the geo-server must monitor; and slaved doctrine, regions surrounding friendly
ships that are to be protected.

3. In addition, tight zones are fixed regions in space of arbitrary size and shape that represent
important regions such as commercial aircraft flight patterns, civilian population areas, etc.
These are shown in polygonal form in the figure.

4. Friendly aircraft are represented as squares, and hostile aircraft as hexagons. The geo-
server’s main task is to determine the presence of these objects in engageability zones,
weapon doctrines, and tight zones.

In the NSWC experiment, each participant was given a sequence of 5 maps similar to that in
Figure 2, representing a temporal sequence of movements of the various objects. How thesemaps
were represented in the geo-server was up to the participants. Note that one consequence of
the problem simplification process is evident here: the input data uses a geometric model that is
two-dimensional and cartesian. An enhanced Haskell geo-server for both three dimensions and a
curved-earth model was developed, but is not reported here (see [CHJ93]).

To get a feel for the output required of the geo-server, here is the output generated by the
Haskell prototype:

Time 0.0:

commercial aircraft: (38.0,25.0)

-- In tight zone

hostile craft: (258.0,183.0)

Time 20.0:

commercial aircraft: (58.0,30.0)

-- In tight zone

hostile craft: (239.0,164.0)

Time 40.0:

commercial aircraft: (100.0,43.0)

-- In engageability zone

-- In tight zone

hostile craft: (210.0,136.0)

-- In carrier slave doctrine

Time 60.0:

5

Haskell Solution

type Region

inRegion !:: Point !-> Region !-> Bool
circle !:: Radius !-> Region
outside !:: Region !-> Region
(/\) !:: Region !-> Region !-> Region

annulus !:: Radius !-> Radius !-> Region
annulus r1 r2 = outside (circle r1) /\
 circle r2

annulus r1 r2 =
 circle r1 

r1

annulus r1 r2 =
 outside (circle r1) 

r1

annulus r1 r2 =
 outside (circle r1)
 /\ circle r2

r1 r2

Implementation

Shallow embedding

★ implement regions as Haskell functions

★ semantics: inRegion

★ no “interpretative overhead”

Shallow Embedding

type Region = Point !-> Bool

p `inRegion` r = r p

circle d = \p !-> distance (0,0) p =< d

outside r = \p !-> not (r p)

r1 /\ r2 = \p !-> r1 p !&& r2 p

func(p Point) bool { 
 return distance((0,0),p) !<= d
}

Study Results

Language Lines of code Lines of documentation Development time (hours)

(1) Haskell 85 465 10
(2) Ada 767 714 23
(3) Ada9X 800 200 28
(4) C++ 1105 130 –
(5) Awk/Nawk 250 150 –
(6) Rapide 157 0 54
(7) Griffin 251 0 34
(8) Proteus 293 79 26
(9) Relational Lisp 274 12 3
(10) Haskell 156 112 8

Figure 3: Summary of Prototype Software Development Metrics

1. Rapide, a language developed at Stanford, uses a partial-ordering-on-events semantics and
a high-level-module structure, and is targeted primarily for simulation and software archi-
tecture modeling [LVB 92].

2. Griffin, a language designed at NYU, can be seen as somewhat of a blend of Ada, SETL, and
ML. It is targeted for the same kinds of applications as Ada [HHLH92].

3. Proteus, a language designed jointly by Duke and the University of North Carolina, is a
parallel programming language with high-level, machine-independent notions of various
kinds of parallelism [MRNP92].

4. Relational Lisp, a language developed at ISI, is essentially Lisp enhanced with notions of
“relational abstraction:” a database-like facility having a logic-programming feel.

5 Results

The table shown in Figure 3 is a concise summary of the development metrics associated with
each of the prototypes. This table is somewhat different from that in [LBK 94], and in any
case should not be used alone to infer any conclusions about the experiment, especially because
some of the prototypes did not actually execute. The following paragraphs describe important
information that must be factored in when interpreting the results. The numbered paragraphs
below correspond to the numbered languages in the table.

(1) The Haskell prototype was written by the second author of this paper, with minor help
from the first; neither attended the kickoff meeting at NSWC. It is interesting to note that of the
85 lines of code, 20 were for encoding of the input data, and 29 were either type synonyms or
type signatures (and thus could have been elided, with the compiler inferring the necessary type
information). Thus only 36 lines of “dynamic” code were required to generate a fully functional

9

Financial
Contracts
Composing contracts: an adventure in financial

engineering

Simon Peyton Jones, Jean-Marc Eber, Julian Seward

Example Contract
The owner of the contract

has the right to choose on June 30 2000
between:

Problems

$ Inaccurate, non-uniform language

$ Analysis and manipulation of contracts

£ calculate worth

£ simulate

Simple Contract
!-- receive £100 on 13/02/2003
c1 !:: Contract
c1 = zcb t1 100 GBP

!-- zero coupon bond
zcb !:: Date !-> Double !-> Currency !-> Contract

mkDate !:: String !-> Date

t1 !:: Date
t1 = mkDate “0800GMT 13 Feb 2003”

Composing Contracts
and !:: Contract !-> Contract !-> Contract

c2,c3 !:: Contract
c2 = zcb t2 200 GBP
c3 = c1 `and` c2

give !:: Contract !-> Contract

andGive !:: Contract !-> Contract !-> Contract
andGive c d = c `and` give d

c4 = c1 `andGive` c2

Haskell in Industry

Finance Many OthersTelecom

Summary

Summary

Domain Specific
Language
Embedded

Liked this material?

Functional Programming in Industry https://dtai.cs.kuleuven.be/events/fpcourse/

Deep Embedding
type Region = R

data R = Circle Radius  
 | Outside R  
 |Intersect R R

p `inRegion` (Circle d)  
 = distance (0,0) p =< d 
p `inRegion` (Outside r) 
 = not (p `inRegion` r) 
p `inRegion` (Intersect r1 r2)  
 = (p `inRegion` r1) !&& (p `inRegion` r2)

 
 
circle = Circle 
outside = Outside 
(/\) = Intersect

Smart Constructors

opt !:: R !-> R
opt (Intersect (Circle d1) (Circle d2))
 = Circle (max d1 d2)
!!...
opt r = r

type Region = R

data R = Circle Radius  
 | Outside R  
 |Intersect R R

 
 
circle = opt . Circle 
outside = opt . Outside 
(/\) = …

