
Tabling as a Library with Delimited Control

Benoit Desouter Marko van Dooren Tom Schrijvers Alexander Vandenbroucke

Ghent University, Belgium
benoit.desouter@ugent.be

marko.vandooren@ugent.be

KU Leuven, Belgium
tom.schrijvers@kuleuven.be

alexander.vandenbroucke@kuleuven.be

Abstract
The logic programming language Prolog uses
a resource-efficient SLD resolution strategy for
query answering. Yet, its propensity for non-
termination seriously detracts from the language’s
declarative nature. This problem is remedied by
tabling, a modified execution strategy that allows
a larger class of programs to terminate. Unfor-
tunately, few Prolog systems provide tabling, be-
cause the documented implementation techniques
are complex, low-level and require a prohibitive en-
gineering effort.
To enable more widespread adoption, this paper
presents a novel implementation of tabling for Pro-
log that is both high-level and compact. It comes in
the form of a Prolog library that weighs in at under
600 lines of code, is based on delimited control and
delivers reasonable performance.

1 Introduction
The essence of programming is crisply captured in Kowal-
ski’s adage ALGORITHM = LOGIC + CONTROL [1979]. The
ideal of logic programming is that the programmer should be
able to focus only on the first part, the problem logic, while
the control should be supplied by the programming system.

Unfortunately, traditional Prolog systems fall short of
reaching this ideal as programmers need to be constantly
aware of Prolog’s SLD resolution strategy [Kowalski, 1974],
which processes rules in a “top-down, left-to-right” fashion.
Consider for example the logic rules for computing the tran-
sitive closure of the e/2 relation:

p(X,Y) :- p(X,Z), e(Z,Y).
p(X,Y) :- e(X,Y).

e(1,2). e(2,3).

Although the logic is correct, Prolog diverges when resolving
any p(X,Y) query. Unfortunately, it is up to the program-
mer to diagnose the left recursion in the first rule as the cul-
prit, and to address the issue by eliminating the left recursion
and by reordering the rules. Moreover, to handle a cycle in
the graph,1 the programmer needs to pollute his declarative

1e.g., obtained by adding the fact e(2,1)

model more thoroughly with control logic. This clearly goes
against the grain of declarative programming.

Tabling is a variation on SLD resolution that does not get
stuck in cyclic derivations, and thus captures the declara-
tive least fixed-point semantics of logic programs more com-
pletely. It works by storing the intermediate answers to pred-
icates (in a data structure known as a table), and reusing them
instead of recomputing them, whenever possible. At the same
time cyclic derivations are suspended and only resumed when
new answers are available. This approach not only improves
the termination behavior, but may also drastically improve
performance—be it at the cost of increased memory usage.

Given these advantages, it may come as a surprise that not
many Prolog systems support tabling. The reason for this
is that existing implementations, such as those of Yap [San-
tos Costa et al., 2012] and XSB [Swift and Warren, 2012],
require pervasive changes to the Prolog engine, the Warren
Abstract machine (WAM) [Warren, 1983; Aı̈t-Kaci, 1999] or
one of its variants. This is a substantial engineering effort that
is beyond most systems [Santos Costa et al., 2012].

Several attempts have been made to tame the complexity
by means of transformations, calls to C routines and very
specific changes to the WAM [Ramesh and Chen, 1994;
Zhou et al., 2000; Guo and Gupta, 2001; 2004]. Neverthe-
less, these approaches incur substantial technical debt, have
a high maintenance and porting cost, and the development
effort cannot be amortised over other features. In contrast,
extension tables [Fan and Dietrich, 1992] provide a high-
level tabling mechanism that is implemented directly in Pro-
log. However, the approach cannot achieve satisfactory per-
formance as suspended goals are always re-evaluated.

We improve upon the current state of the art with a novel
lightweight implementation of tabling based on delimited
control. Our approach comes in the form of a Prolog li-
brary that weighs in at less than 600 lines of code, delivers
acceptable performance, and requires only a minimal exten-
sion to the Prolog system: delimited control [Schrijvers et
al., 2013b]. Moreover, the development effort of delimited
control can be amortized over the range of high-level lan-
guage features they enable, such as effect handlers [Plotkin
and Pretnar, 2013].

The remainder of this paper provides a high-level overview
of our contribution. We refer to the extended paper [Desouter
et al., 2015] for more details.

2 Denotational Semantics, SLD Resolution
and Tabling

This section reviews the denotational semantics of logic pro-
grams [Lloyd, 1984] and explains the connection to tabling.

Consider a definite clause program P . The Herbrand base
HP of P is the set of all ground atoms in P . A Herbrand
interpretation I states which ground atoms are true and which
are false. By convention, we represent I by the set of true
atoms (i.e. ∀a ∈ HP : I |= a iff a ∈ I).

The immediate consequence operator TP(I) of P captures
which atoms follow directly from the given interpretation I
by one of the rules in the program.

TP(I) = {α ∈ HP | α← B1, . . . , Bn is a ground
instance of a clause in P ∧ {B1, . . . , Bn} ⊆ I}

The conventional denotational semantics for P is the
unique interpretation I that is the least fixed-point of TP, also
known as the least Herbrand model of the program. This in-
terpretation contains those and only those atoms that follow
from the program and that are not self-supported.

Example 1 Consider the following program P :
p(a). p(b).
q(X) :- p(X).

Its Herbrand base is {p(a), p(b), q(a), q(b)} and its fixpoint
semantics is lpf (TP) = {p(a), p(b), q(a), q(b)}.

It can be show that the least fixed-point of TP is TP↑ω
where TP↑ω is defined as:

TP↑0 = ∅
TP↑n = TP

(
TP↑n−1

)
, n > 0

TP↑ω =
⋃
n≥0

TP↑n

This definition suggests a naive bottom-up evaluation strat-
egy, which is used in an improved semi-naive form by Data-
log systems. However, this strategy is impractical for query
answering in the general Prolog setting. Firstly, compound
terms give rise to both an infinite Herbrand model and an in-
finite least Herbrand model which cannot be practically com-
puted. Secondly, the bottom-up strategy can be overly expen-
sive because it derives more facts than necessary for answer-
ing the query at hand.

Hence, Prolog uses the top-down strategy of SLD resolu-
tion, essentially based on TP

−1 to reason backwards from
the query and only consider relevant facts. Unfortunately,
this backwards chaining strategy easily gets trapped in cyclic
derivations. In contrast, tabling combines the best elements
of both approaches: the efficiency of top-down SLD resolu-
tion and the cycle-insensitivity of bottom-up least fixed-point
computation. Tabling’s backbone is top-down resolution, but
paired with active cycle detection. It replaces infinite cycles
with a forward-chaining least fixed-point strategy, not unlike
the immediate consequence operator TP, but switches back to
top-down resolution for previously unexplored queries. Like
in the bottom-up strategy tabling comes at the cost of stor-
ing the answers to intermediate queries. To mitigate this cost,

most systems use SLD resolution by default and allow the
programmer to enable tabling for individual predicates.

The hybrid top-down/bottom-up strategy of tabling re-
quires complex control to deviate from the default SLD res-
olution. This control is typically implemented at a low level
in the Prolog abstract machine, where it cross-cuts the exist-
ing architecture in a very intricate manner. In this work, we
propose an alternative high-level implementation approach,
based on a high-level language feature for manipulating SLD
resolution control flow from within the program: delimited
control.

3 Delimited Continuations
Delimited control [Felleisen, 1988; Danvy and Filinski, 1990]
is the key ingredient of our lightweight tabling approach.
This technique originates in functional programming and was
recently introduced in Prolog by Schrijvers et al. [2013b;
2013a] in the form of two built-ins: reset/3 and shift/1
for delimiting and capturing the continuation respectively.

• reset(Goal,Cont,Term1) executes Goal. If
Goal calls shift(Term2), its further execution is
suspended and unified with continuation Cont. A con-
tinuation is an unspecified Prolog term, which can be
resumed using call/1. It can be called, saved, copied
and compared like any other term, but it is opaque: from
its representation we cannot determine anything about
the actual goals it represents.

• shift(Term2) unifies the remainder of Goal up to
the nearest call to reset/3 (i.e., the delimited contin-
uation) with Cont, and its return value Term2 with
Term1. Finally, it returns control to just after the
reset/3 goal.

The following example illustrates these two built-ins.
Example 2 Consider the following variation on the transi-
tive closure program:

p(X,Y) :- e(X,Y).
p(X,Y) :- shift(t(X,Z)), e(Z,Y).

e(1,2). e(3,4).

If we delimit the query p(1,Y) with reset/3, we get two
answers.

?- reset(p(1,Y),Cont,Term).
Y = 2, Cont = 0, Term = 0 ;
Cont = ..., Term = t(1,Z) .

The first is a proper answer obtained via the first rule.2 The
second answer follows from the second rule: shift has
ended the resolution prematurely without a proper answer
and captured the pending subgoal e(Z,Y) in Cont.

If we happen to know of an alternative edge from node 1
to node 3, we can instantiate Z accordinly, through the unifi-
cation of Term. Then we can resume the continuation to get
another proper answer.

?- reset(p(1,Y),Cont,Term),
Term = t(1,3),
call(Cont).

Cont = ..., Term = t(1,3), Y = 4 .

2The dummy value 0 indicates that Cont and Term are not used.

2

delim(Wrapper,Worker,Table) :-
reset(Worker,Continuation,SourceCall),
(Continuation == 0 ->
store_answer(Table,Wrapper)

;
SourceCall = call_info(_,SourceTable),
TargetCall = call_info(Wrapper,Table),
Dependency = dependency(SourceCall,
Continuation,TargetCall),

store_dependency(SourceTable,Dependency)
).

Figure 1: Delimited execution.

4 Implementation
This section provides a high-level overview of our tabling im-
plementation. For reasons of brevity, we leave out the non-
essential details, such as the definitions of the data structures
involved, which are included in the full version of this pa-
per [Desouter et al., 2015].

The main execution strategy is Prolog’s native SLD-
resolution. However, delimited control allows us to interrupt
this process when a cycle is detected, set the ongoing deriva-
tion aside for the time being, and instead explore alternatives.

Cycle-Free Phase Our implementation introduces tabling
by means of a shallow source-to-source program transforma-
tion. Here is the result for our running example:

p(X,Y) :- table(p(X,Y),p_aux(X,Y)).

p_aux(X,Y) :- p(X,Z), e(Z,Y).
p_aux(X,Y) :- e(X,Y).

The body of the original predicate has been moved into an
auxiliary worker predicate p aux/2 and p/2 now wraps the
generic tabling logic table/2 around this worker.

The tabling logic intercepts all calls to the predicate and
distinguishes three different scenarios.

1. The call has not previously been encountered. Then
control is passed to the worker to compute the answers,
which are stored in the table and finally returned. This
scenario is covered by the first four lines of Figure 1.

2. A cycle is detected where the current call is a variant of
an ancestor call. Clearly the results of the current call are
needed to compute the results for a tabled parent call.
With shift/1 this parent computation is suspended.
This scenario is covered by the remaining lines of code
in Figure 1, where the reset/3 delimits the parent
computation and the suspended computation is stored
for later reactivation in the form of a dependency.
This dependency records the source (= child) and target
(=parent) calls alongside the continuation, which turns
answers to the former into answers to the latter.

3. The answers for the call are already available in a ta-
ble datastructure. Instead of recomputing them, they are
simply read from the table.

For instance, when first calling p(X,Y), delim/3 calls
p aux(X,Y). In turn p aux(X,Y) calls p(X,Z) which

invokes shift/1, suspending resolution of the remainder
of the rule. The dependency is recorded that the continu-
ation e(Z,Y) yields results for p(X,Y) given results for
p(X,Z). Finally, through backtracking the non-cyclic an-
swers p(1,2) and p(2,3) are found.

Completion Phase After all alternatives have been ex-
hausted through backtracking, our implementation enters the
completion phase where it computes a fixed point of stored
results and dependencies. To make this more concrete, sup-
pose we have solution {X = 1, Z = 2} for p(X,Z) as well as
the previously mentioned dependency for p(X,Y), and the
program contains the fact e(2,1). Then, solving the con-
tinuation e(Z,Y) using our modified SLD-resolution results
in the solution {X = 1, Y = 1} for p(X,Y).

In general, resuming a continuation may lead both to new
results and new dependencies. Hence, a fixed-point computa-
tion is required that stops when no new results or dependen-
cies are generated.

Implementation Support In addition to the two delimited
control primitives, our implementation requires support from
the Prolog system for mutable terms, non-backtrackable mu-
tations3 and global variables. These features are available in
many Prolog systems and generally easy to add to others.

5 Evaluation
Implementation Effort The control flow part for our
tabling implementation comprises 60 LoC, which is about
10% of the whole implementation. This is quite unprece-
dented and clearly attests to the high-level nature of the ap-
proach. The majority of the code is made up by two kinds of
data structures: the tables (233 LoC or 40%) and the fixed-
point worklists (259 LoC or 45%). Adding 25 lines of glue
code, this amounts to an implementation in 577 Prolog LoC.

Performance While raw performance is not the main ob-
jective of our lightweight implementation, it is nevertheless
important to compare reasonably to the existing state-of-the-
art. In order to evaluate this, we compare our implementa-
tion in hProlog 3.2.38 against XSB 3.4.0 [Swift and Warren,
2012], B-Prolog 8.1 [Zhou, 2012], Yap 6.3.4 [Santos Costa
et al., 2012] and Ciao 1.15-2731-g3749edd [Hermenegildo et
al., 2012] on a number of benchmarks.4 Table 1 summarizes
the results (in ms) obtained on a Dell PowerEdge R410 server
(2.4 GHz, 32 GB RAM) running Debian 7.6.

Discussion The XSB system is the reference system for
tabling; it has invested the most time and resources in the
development of its tabling infrastructure. We see that it is 8
to 38 times faster than our implementation, but 45 to 78 times
faster for two outliers (path right last: binary tree 18 and 10k
pingpong).

3Essential to retain the stored answers and dependencies across
backtracking.

4The description and code of the benchmarks can be found at
http://users.ugent.be/˜bdsouter/tabling/.

3

Benchmark Size hProlog hProlog
XSB

hProlog
B−Prolog

hProlog
Ciao

recognize 20,000 205 26 0.003 4
50,000 503 30 0.001 4

n-reverse 500 767 38 11 45
1,000 2,800 31 6 34

shuttle 2,000 44 ∞ 0.1 9
5,000 138 23 0.08 12

20,000 582 24 0.02 10
50,000 1,586 29 0.01 12

ping pong 10,000 271 45 0.07 14
20,000 490 35 0.03 8

path double first loop 50 653 19 13 7
100 4,638 17 10 6

path double first 50 162 27 15 14
100 989 20 12 10
200 6,785 18 16 10
500 110,463 25 19 14

path right last: pyra-
mid 500

500 1,914 35 29 27

path right last: binary
tree 18

18 108,662 78 50 42

test large joins 2 12 3,001 10 4 12
joins mondial 6,444 8 7 6

Table 1: Results of the performance benchmarks.

B-Prolog is only half as fast as XSB on many benchmarks,
but is architecturally different: BProlog implements linear
tabling and uses a hashing-based table. Moreover, in several
cases B-Prolog is notably slower than XSB (i.e., n-reverse)
and even much slower than our own implementation (recog-
nize, shuttle, ping pong). All in all the results are mixed and
point out several weaknesses in the B-Prolog implementation
compared to our all Prolog implementation.

The performance of Ciao lies between that of XSB and B-
Prolog. Performance of our implementation is within a factor
4 to 14 of Ciao, with reverse and path right last as outliers.

The Yap tabling implementation, which is based on that
of XSB, is clearly the fastest: the underlying engine is much
faster [Rocha et al., 2000]. It outperforms our approach on all
benchmarks, and the other systems on most. Six benchmarks
take less than 1ms (rounded down to 0ms). We refer the
reader to [Desouter et al., 2015] for the detailed Yap timings,
which we have left out here for reasons of space.

Summary We consider the performance results of our
implementation very reasonable, especially if we take into
account the stark contrast between our concise and high-level
implementation and the complex integration in other systems.

6 Related Work
Delimited Control Delimited control, well-known in func-
tional programming, has not received much attention in the
context of Prolog. Only recently have Schrijvers et al. pro-
vided an unobtrusive implementation in the WAM [2013b;
2013a]. In the continuation-passing implementation [Tarau
and Dahl, 1994] of BinProlog [Tarau, 2012] this is even eas-

ier. Schrijvers et al. also illustrate the power of delimited con-
trol by porting various effect handlers [Plotkin and Pretnar,
2013] to Prolog. As far as we know, tabling as a library is the
first Prolog-specific application.

Other Tabling Mechanisms XSB [Swift and Warren,
2012] is the best-known Prolog engine supporting tabling. Its
foundation, SLG resolution, has been described by Chen and
Warren [1996]. It is based on stack freezing, which has re-
quired deep changes to the architecture of the WAM.

Linear tabling and DRA [Zhou et al., 2000; Guo and
Gupta, 2001; 2004] implement tabled evaluation by stealing
choicepoints or reordering alternatives at run time. They also
require specific lowlevel WAM changes and have a worse
time performance than XSB.

Ramesh and Chen [1994] extend Prolog with tabling prim-
itives implemented in C. Calls to the primitives are intro-
duced in a complex program transformation. More recently,
Guzmán et al. [2008] have addressed the performance bot-
tlenecks of Ramesh and Chen’s approach using more fine-
grained primitives. Hence, the approach does not lower the
threshold for adopting tabling.

CAT is an alternative to the SLG-WAM used in XSB [De-
moen and Sagonas, 1998a]. Rather than stack freezing, CAT
uses incremental copies to preserve the execution state of sus-
pended computations. CHAT is a hybrid between SLG and
CAT [Demoen and Sagonas, 1998b]. Both CAT and CHAT
acknowledge that the complexity and scope of WAM-changes
should be kept limited.

7 Conclusion
We have presented a new high-level implementation of
tabling. Our approach is implemented entirely as a Prolog li-
brary and requires no deep modifications to the WAM or com-
plex program transformations. It weighs in at less than 600
LoC and, in particular, captures the complex control manage-
ment of tabling in 60 LoC thanks to delimited control. We be-
lieve that the simplicity of this implementation makes tabling
more accessible to a wider range of Prolog systems, while
still delivering a reasonable performance.

Acknowledgments
We are grateful to Bart Demoen for maintaining hProlog.
This work was partly supported by the Flemish Fund for Sci-
entific Research (FWO), and partly by project GRACeFUL,
which has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement� 640954.

References
[Aı̈t-Kaci, 1999] Hassan Aı̈t-Kaci. Warren’s Abstract Ma-

chine — a Tutorial Reconstruction. http://wambook.
sourceforge.net/, 1999. Online edition of the 1991
book published by MIT Press.

[Chen and Warren, 1996] Weidong Chen and David S. War-
ren. Tabled evaluation with delaying for general logic pro-
grams. J. ACM, 43(1):20–74, 1996.

4

[Danvy and Filinski, 1990] Olivier Danvy and Andrzej Filin-
ski. Abstracting control. In Proceedings of LFP’90, LFP
’90, pages 151–160. ACM, 1990.

[de Guzmán et al., 2008] Pablo Chico de Guzmán, Manuel
Carro, Manuel V. Hermenegildo, Cláudio Silva, and Ri-
cardo Rocha. An improved continuation call-based imple-
mentation of tabling. In Proceedings of PADL’08, volume
4902 of LNCS, pages 197–213. Springer, 2008.

[Demoen and Sagonas, 1998a] Bart Demoen and Konstanti-
nos Sagonas. Cat: The copying approach to tabling.
In Catuscia Palamidessi, Hugh Glaser, and Karl Meinke,
editors, Principles of Declarative Programming, volume
1490 of LNCS, pages 21–35. Springer, 1998.

[Demoen and Sagonas, 1998b] Bart Demoen and Konstanti-
nos Sagonas. Chat: The copy-hybrid approach to tabling.
In Gopal Gupta, editor, Proceedings of PADL’98, volume
1551 of LNCS, pages 106–121. Springer, 1998.

[Desouter et al., 2015] Benoit Desouter, Marko van Dooren,
and Tom Schrijvers. Tabling as a library with delimited
control. Theory and Practice of Logic Programming, 15(4-
5):419–433, 2015.

[Fan and Dietrich, 1992] Changguan Fan and Suzanne Wag-
ner Dietrich. Extension table built-ins for Prolog. Soft-
ware: Practice and Experience, 22(7):573–597, 1992.

[Felleisen, 1988] Mattias Felleisen. The theory and practice
of first-class prompts. In Proceedings of POPL’88, POPL,
pages 180–190. ACM, 1988.

[Guo and Gupta, 2001] Hai-Feng Guo and Gopal Gupta. A
simple scheme for implementing tabled logic program-
ming systems based on dynamic reordering of alternatives.
In Proceedings of ICLP’01, pages 181–196. Springer,
2001.

[Guo and Gupta, 2004] Hai-Feng Guo and Gopal Gupta. An
efficient and flexible engine for computing fixed points.
CoRR, abs/cs/0412041, 2004.

[Hermenegildo et al., 2012] M. V. Hermenegildo, F. Bueno,
M. Carro, P. Lı́pez-Garcı́a, E. Mera, J. F. Morales, and
G. Puebla. An overview of Ciao and its design philosophy.
Theory and Practice of Logic Programming, 12(1-2):219–
252, January 2012.

[Kowalski, 1974] Robert Kowalski. Predicate logic as pro-
gramming language. In Proceedings of International Fed-
eration for Information Processing (IFIP), pages 569–574,
1974.

[Kowalski, 1979] Robert Kowalski. Logic for Problem Solv-
ing. North-Holland, 1979.

[Lloyd, 1984] J. W. Lloyd. Foundations of Logic Program-
ming. Springer-Verlag, New York, 1984.

[Plotkin and Pretnar, 2013] Gordon D. Plotkin and Matija
Pretnar. Handling algebraic effects. Logical Methods in
Computer Science, 9(4), 2013.

[Ramesh and Chen, 1994] R. Ramesh and Weidong Chen. A
portable method for integrating SLG resolution into Prolog
systems. In Proceedings of ILPS’94, ILPS, pages 618–
632, Cambridge, 1994. MIT Press.

[Rocha et al., 2000] Ricardo Rocha, Fernando Silva, and
Vı́tor Santos Costa. YapTab: A tabling engine designed to
support parallelism. In Conference on Tabulation in Pars-
ing and Deduction, pages 77–87, 2000.

[Santos Costa et al., 2012] Vı́tor Santos Costa, Ricardo
Rocha, and Luı́s Damas. The YAP Prolog system. Theory
and Practice of Logic Programming, 12(1-2):5–34, 2012.

[Schrijvers et al., 2013a] Tom Schrijvers, Bart Demoen, and
Benoit Desouter. Delimited continuations in Prolog: Se-
mantics, use and implementation in the WAM. Report CW
631, Dept. of Computer Science, KU Leuven, 2013.

[Schrijvers et al., 2013b] Tom Schrijvers, Bart Demoen,
Benoit Desouter, and Jan Wielemaker. Delimited continu-
ations for Prolog. Theory and Practice of Logic Program-
ming, 13(4-5):533–546, 2013.

[Swift and Warren, 2012] Terrance Swift and David S. War-
ren. XSB: Extending Prolog with tabled logic program-
ming. Theory and Practice of Logic Programming, 12(1-
2):157–187, January 2012.

[Tarau and Dahl, 1994] Paul Tarau and Veronica Dahl. Logic
programming and logic grammars with first-order contin-
uations. In Proceedings of LOPSTR ’94, volume 883.
Springer, June 1994.

[Tarau, 2012] Paul Tarau. The BinProlog experience: Archi-
tecture and implementation choices for continuation pass-
ing Prolog and first-class logic engines. Theory and Prac-
tice of Logic Programming, 12(1-2):97–126, 2012.

[Warren, 1983] D. H. D. Warren. An Abstract Prolog In-
struction Set. Technical Report 309, SRI, 1983.

[Zhou et al., 2000] Neng-Fa Zhou, Yi-Dong Shen, Li-Yan
Yuan, and Jia-Huai You. Implementation of a linear
tabling mechanism. In Practical Aspects of Declara-
tive Languages, volume 1753 of LNCS, pages 109–123.
Springer, 2000.

[Zhou, 2012] Neng-Fa Zhou. The language features and ar-
chitecture of B-Prolog. Theory and Practice of Logic Pro-
gramming, 12(1-2):189–218, 2012.

5

