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Abstract. Over 20 years ago, Peyton Jones et al. embarked on an ad-
venture in financial engineering with their functional pearl on “Compos-
ing Contracts”. They introduced a combinator library—a domain-specific
language—for precisely describing complex financial contracts and a for-
mal denotational semantics for computing their value, for which they
briefly sketched an implementation.

This paper reworks the design of their library to make the central datatype
of contracts less ad-hoc by giving it a well-understood algebraic struc-
ture: the semiring. Then, interpreting a contract’s worth as a generic
semiring homomorphism directly gives rise to a natural semantics for
contracts, of which computing the (monetary) value is but one instance.
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1 Introduction

Consider the following contract from “Composing Contracts” [6]:

C The right to choose on 30 June 2000 between:
Cl Both of: C11 Receive $100 on 29 Jan 2001.
C12 Pay $105 on 1Feb 2002.
C2 An option exercisable on 15 Dec 2000 to choose one of:

C21 Both of: (211 Receive $100 on 29 Jan 2001.
C212 Pay $106 on 1 Feb 2002.

C22 Both of: (€221 Receive $100 on 29 Jan 2001.
C222 Pay $112 on 1 Feb 2003.

This simplified contract is representative of those that commonly occur in the
finance industry. A key insights is that larger contracts, such as C, are created
by composing smaller contracts, such as C1 and C2.

The finance industry employs an extensive vocabulary for describing specific
forms of financial contracts (swaps, futures, caps, floors, American options, and
European options, to list but a few). As Peyton Jones et al. [6] say “Treating
each of these individually is like having a large catalogue of prefabricated com-
ponents. The trouble is that someone will soon want a contract that is not in
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the catalogue.” The benefit of realising and exploiting the compositional nature
of contracts is that we can describe and reason about a vast class of complex
contracts with only a small set of primitive combinators. Indeed, with only ten
combinators, Peyton Jones et al. manage to express a wide variety of contracts.

The design of a combinator library can be helped immensely by relying on
algebraic abstractions (e.g., [8]). Therefore, a natural question is if there is a
suitable abstraction for financial contracts. This paper focuses on such an ab-
straction: the semiring (also called a rig). A semiring is a set equipped with
two operations and two identities for those operations, satisfying certain ax-
ioms. Semirings capture a large variety of concepts, e.g., natural, integer and
real numbers, polynomials, gradients, probabilities, and tropical semirings.

The key idea of this paper is that contracts also form a semiring. The two
primary ways of combining contracts (“Choose between” and “Both Of”) are
associative and commutative. Both operations have identities, the first of which
is the second’s annihilator. Finally, “Both Of” distributes over “Choose Between”.

To give a precise meaning to the monetary value of a contract, Peyton Jones
et al. [6] define a denotational semantics of the combinators in terms of so-called
“value processes”, i.e., time-varying probabilistic processes. Here too, we can
take inspiration from mathematics, by reimagining the semantics as a universal
semiring homomorphism, i.e. a structure-preserving function from contracts to
any semiring (equipped with inverses). In other words, the contract semiring is
the initial object with respect to such semirings. In essence, this defines a fam-
ily of correct-by-construction interpretations for contracts where the particular
interpretation depends on the targeted semiring. Thus, we can instantiate new
interpretations for contracts, simply by plugging in semirings from the literature.
Notably, the tropical semiring coincides with the original semantics.

We make the following changes to Peyton Jones et al. [6]’s contract library:
(1) a new annihilator contract, expired; (2) a new combinator both, that re-
places and; and (3) a small change to the meaning of expiry date and the related
truncate-primitive. These changes make contracts into a semiring, without los-
ing expressivity. Reviewer 1 characterizes them as follows: “ Computationally,
they are every bit as reasonable as the originals, syntactically they are no harder,
and semantically they are much more understandable and satisfying.”

Moreover, we give a universal definition of a homomorphism from contracts to
any semiring that has a multiplicative group, i.e., whose multiplicative operation
is invertible. Assuming that such a semiring admits a useful financial model, this
definition subsumes the original denotational semantics. This paper is written in
Literate Haskell, but a more complete implementation of the combinator library
is available at https://github.com/tschrijv/RiggedContracts.

2 The Contract Library

This section presents the contract combinator library, which is inspired by—but
not identical to—that of Peyton Jones et al. Our running example contract is
the zero-coupon bond, one of the simplest contracts in the finance industry:
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zcb :: Time -> Double -> Currency -> Contract obs
cO = zcb (date "21 Apr 2020") 100 EUR

Contract cO entitles its holder to receive 100 EUR on the April 21, 2020. The zcb
function takes a time, a Double amount and a Currency; and it returns a value
of type (Contract obs).? A Currency is a sum type of different currencies, e.g.:

data Currency = EUR | GBP |

We assume a given function date :: String -> Time that turns a textual rep-
resentation of a date into a value of the type Time, which is defined in Section 3.1.

2.1 Acquisition Date and Expiry Date

To give a precise description of the contract combinators, we must first define two
technical notions: the acquisition time* and the expiry date. For the purposes of
this paper, a contract is a legally binding agreement between the holder of the
contract and another party. Acquiring a contract means that the holder enters
into a legally binding agreement with the other party, with legal consequences
for both parties that stem from the rights and obligations it mentions. These
consequences depend on the acquisition time, the time at which the contract is
acquired. For example, the contract cO above is worth a lot less if it is acquired
on the 227 of April, 2020 than if it is acquired on the 19*" of the same month,
because obligations and rights before the acquisition time have no effect.

Complementary to the acquisition time is the contract’s expiry date. The
expiry date is defined as the earliest point in time at which a contract can no
longer be acquired. This differs subtly from the concept of a horizon as defined by
Peyton Jones et al. [6], which is the latest time at which it can be acquired. We use
the term “expiry date” rather than “horizon” to emphasise this distinction. This
small—but crucial—difference is necessary to equip contracts with a semiring
(see Sections 3.2 and 4.3). A contract’s expiry date is an innate property that
is completely specified by its definition (see Figure 1). However, a contract’s
consequences may extend well beyond its expiry date. Consider a contract that
confers “the right to decide on Dec 26, 2020 whether or not to acquire contract
C”. This contract must be acquired before Dec 26, 2020—its expiry date—but
the underlying contract C' may have consequences much later than Dec 26, 2020.
This kind of contract is called an option.

Figure 1 describes each primitive contract combinator in an informal man-
ner.® The relevant parts of the description that differ from Peyton Jones et al.’s
due to our definition of the expiry date are underlined.

2.2 Discount Bonds

To illustrate the combinator library, let us reconsider the zero-coupon bond, zcb,
which, it turns out, is not a primitive. It is defined as follows:

3 The meaning of the obs parameter is explained in Section 2.2.
4 Also called the acquisition date.
® Backquotes turn a function into an infix operator, e.g., x ‘f¢ y = f x y.
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expired :: Contract obs
This contract expires at the epoch, the first moment in time. Because
the contract is always expired, it is not acquirable.

zero :: Contract obs
zero is a contract that may be acquired at any time. It conveys
neither rights nor obligations, and never expires.

one :: Currency -> Contract obs
(one k) is a contract that immediately pays the holder one unit of
the currency k. The contract never expires.

give :: Contract obs -> Contract obs
To acquire (give c) is to acquire all ¢’s rights as obligations and
vice versa. It expires when the underlying contract expires.

both :: Contract obs -> Contract obs -> Contract obs
If you acquire both c1 c2, then you immediately acquire both c1
and c2 unless either c1 or c2 has expired, in which case you acquire
neither. The composite contract expires when either c1 or c2 expires.

or :: Contract obs -> Contract obs -> Contract obs
If you acquire (c1 ‘or¢ c¢2) then you must immediately acquire c1
or c2 (but not both). If either has expired, that one cannot be ac-
quired. When both have expired, the compound contract has expired.

truncate :: Time -> Contract obs -> Contract obs
(truncate t c) is exactly like ¢ except that its expiry date is the
earlier of t and the expiry date of c. Notice that truncate limits only
the possible acquisition dates of c; it does not truncate c¢’s rights or
obligations, which may extend beyond t.

thereafter :: Contract obs -> Contract obs
If you acquire (c1 ‘thereafter‘ c2) and cl has not expired, then
you must acquire cl. If c1 has expired and c¢2 has not, you must
acquire c2. The compound contract expires when c1 and c2 expire.
(Called “then” in the original paper, a reserved Haskell keyword.)

scale :: obs -> Contract obs -> Contract obs
If you acquire (scale o c¢), then you immediately acquire a contract
just like ¢, except that all rights and obligations of ¢ are multiplied
by the value of the observable o at the moment of acquisition. The
scaled contract expires when the underlying contract expires.

get :: Contract obs -> Contract obs
If you acquire (get c) then you must acquire c just before it expires.
The new contract expires when the underlying contract expires.

anytime :: Contract obs -> Contract obs
If you acquire (anytime c) then you must acquire c, but you can do
so at any time (from the acquisition of (anytime c) onwards) before
c expires. The new contract expires when the underlying contract
expires.

Fig. 1: Contract Combinators
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zcb :: Time -> r -> Currency -> Contract (Time -> r)
zcb time amount currency = scaleK amount (get (truncate time (one currency)))

At its core is the one contract:
one :: Currency -> Contract obs

Acquiring (one EUR) at any time immediately gives you €1. However, suppose
instead that we want to receive €100 at a specific time, and not earlier. First,
to fix the time, we combine get and truncate, to get a contract that gives you
€1 at a specific time t:

get (truncate t (one EUR))

The truncate combinator trims (one EUR)’s expiry date to t, so that it can
only be acquired before t, and get forces truncate t (one EUR) to be acquired
at the last possible moment, i.e. just before t. The combined effect is the desired
one, namely that by acquiring this contract at any time before t, the holder will
receive one euro at t.

Second, to receive €100, not €1, we must scale up the contract by a factor of
100. This scaling is achieved with the auxiliary combinator scaleK, which builds
on the primitive combinator scale:

scaleK :: r -> Contract (Time -> r) -> Contract (Time -> r)
scaleK x ¢ = scale (const x) ¢

The contract (scale obs c), when acquired at time t, scales all the rights
and obligations of ¢ by the value of the observable obs at time t. Observables
are time-varying quantities like a particular stock price, interest rate, or even
temperature. For simplicity, this paper represents observables as functions of
type (Time -> r). The scaleK combinator simply uses a constant function, i.e.
scales with a constant factor.

2.3 Composing Contracts

So far, we have seen combinators that create new contracts by modifying a
single contract in some way (e.g., truncating its expiry date or scaling its value).
Another way to create contracts is by composing several into a larger contract.
A straightforward way of combining two contracts c1 and c2 is by creating a
new contract that confers the rights and obligations of both c1 and c2. This is
accomplished by the both combinator (see Figure 1):

both :: Contract obs -> Contract obs -> Contract obs

Upon acquiring both ¢l ¢2, you must immediately acquire both c1 and c2,
unless either c1 or c2 has expired, in which case you acquire neither. The com-
pound contract expires when either c1 or c2 expires. For example, the following
is a contract that entitles you to receive €100 at time t1, and €100 more at t2:

both (zcb t1 100 EUR) (zcb t2 100 EUR)
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Another way to combine contracts is to introduce a choice between two con-
tracts: upon acquiring the contract (c1 ‘or¢ c2) you must immediately acquire
either c1 (if it has not expired) or ¢2 (if it has not expired), but not both. The
compound contract expires when both c1 and c2 have expired. This operator is
commutative: choosing between c1 and c2 is equivalent to choosing between c2
and c1.

For example, the following contract entitles you to receive €100 at time t1,
or €200 at time t2:

zcb t1 100 EUR ‘or‘ zcb t2 200 EUR

The available choices are determined by the acquisition time: if you acquire the
contract above after t1, but before t2, only the second contract is still available.
You cannot choose to do nothing.

Nevertheless, the option to do nothing is useful to have, and it is captured
by the zero contract, which confers neither rights nor obligations. For example,
it allows a style of contract, called a Furopean option that bestows the right to
decide, at a particular time, whether or not to acquire some underlying contract:

european :: Time -> Contract obs -> Contract obs
european t ¢ = get (truncate t (c ‘or‘ zero))

We see that we first introduce a choice between acquiring ¢ and doing nothing
(zero). Next, we truncate the expiry date of the choice to t and use get to
enforce that the choice is made just before t.

Recall that contracts are agreements between two parties. Thus, it seems
rather unfair that the one combinator only pays the holder, and not the other
party. This situation is reversed by the give combinator: (give c) is the con-
tract c, with the rights and obligations reversed. For example, the following is a
contract whose holder receives €100 at time t1, and pays €200 at time t2:

both (zcb t1 100 EUR) (give (zcb t2 200 EUR))
Note that give also changes who makes the choices. E.g., in the following,
give (european t1 (give (zcb t2 200 EUR)))

the other party decides whether the holder of the contract receives €200.

Both vs. And Instead of both, we could define a similar combinator and: if
you acquire (cl ‘and® c2), you acquire both c1 (unless it has expired) and
c2 (unless it has expired), and the compound contract expires only when both
cl and c2 have expired. That is, one contract expiring does not prevent you
from acquiring the other contract. The both combinator enforces a stronger tie
between two contracts: For instance, suppose contract c1 obliges the holder to
pay a certain amount, and c2 obliges the holder to receive a certain amount,
then (both c1 ¢2) ensures that no money is received (c2) without the required
payment (c1). On the other hand, (c1 ‘and‘ c2) may seem more flexible.
However, unlike in Peyton Jones et al.’s library, where and is defined as a
primitive, in our library, the behaviour of and can instead be recovered from
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both and or by acquiring (both c1 c2) before it expires, or afterwards picking
up the remaining contract with (c1 ‘or¢ c2):

and :: Contract obs -> Contract obs -> Contract obs
cl ‘and‘ c2 = (both cl c2) ‘thereafter® (cl ‘or‘ c2)

The thereafter combinator (see Figure 1) composes contracts sequentially: it
blocks the acquisition of a contract until another contract has expired. More
precisely: if you acquire (c1 ‘thereafter‘ c2), you must acquire cl1, unless
c1 has expired, in which case you must acquire c2. Consider, for instance:

zcb t1 200 EUR ‘thereafter‘ zcb t4 300 EUR

If it is acquired before t1, it entitles you to receive €200 on t1. If it is acquired
on or after t1, but before t4, it entitles you to receive €300 on t4.

Choosing When The or combinator allows the holder to choose which of two
contracts to acquire. Conversely, the anytime combinator allows the holder to
choose when to acquire a contract. More precisely, if you acquire (anytime c),
then you must acquire c, but you are free to do so at any time after the acqui-
sition date and before c expires. This allows the contract language to express
an American option. Unlike the European option, an American option not only
allows you to decide whether to acquire an underlying contract, but also when
to do so (within a specific time interval):

american :: Time -> Time -> Contract obs -> Contract obs
american tl t2 ¢ = beforeTl ‘thereafter‘ afterTl where
beforeTl = get (truncate tl1 afterT1)
afterT1 = anytime (truncate t2 (zero ‘or‘ c))

There are two parts to this contract. The first part, beforeT1, prevents the
acquisition of ¢ until t1: if the option is acquired before t1, all it does is ensure
you acquire afterT1 at t1. Otherwise, if the option is acquired after t1, afterT1
is acquired directly. This contract then allows you to choose whether and when
to acquire c—until t2, when the option expires.

3 Instant Semiring, Just Add Expired

Having introduced all the necessary combinators, we now recall the definition of
a semiring and then explain how to equip contracts with a semiring structure.

3.1 Definition of a Semiring
A semiring is an algebraic structure defined as follows:

Definition 1 (Semiring). A semiring (R,+, x,0,1) is a set R equipped with
two operations + and X and elements 0,1 € R such that + and X are associative,
with identities 0 and 1, respectively. Additionally, + is commutative, 0 is the
annihilator for x, and x distributes over + on the left and right.
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That is, + and x are monoids (they are associative and each have a neu-
tral element). Additionally, + commutes, but x does not have to. For instance,
square-matrix multiplication is a semiring, even though matrix multiplication is
not commutative (unless the matrices are invertible). Annihilation and distribu-
tivity ensure that 4+ and x are compatible.

In Haskell, we capture semirings in the following Semiring type class:

class Semiring r where instance Semiring Double where
nil i r nil =0
unit r unit =1
plus :: r ->r ->r plus = (+)
times :: r ->r ->r times = (x)

Numeric semirings The natural numbers, integers and real numbers form semir-
ings, with their standard notions of addition and multiplication. For instance,
we can define the above instance for Double.%

Tropical Semirings A more exotic variant of a semiring is the Tropical Semiring.
The maz(resp. min)-tropical semiring consists of the real number line extended
with negative (resp. positive) infinity. Addition is defined by taking the maximum
of its arguments, and multiplication is addition of the extended real numbers.
In Haskell, we provide a slightly more general definition:

data Max a = NegInfty | Max a deriving (Eq,0rd,Show,Functor)
Min a | PosInfty deriving (Eq,0Ord,Show,Functor)

data Min a

instance (Ord a, Semiring a) => Semiring (Max a) where
nil NegInfty
unit = Max nil
plus = max
Max a ‘times® Max b

Max (a ‘plus‘ b)
NegInfty
-- instance Semiring Min omitted for brevity

_ ‘times‘ _

Time Semiring The natural numbers extended with positive infinity possess an
alternative semiring, by setting + to max and X to min. This proves to be a
convenient definition of time:

data Time = Finite Int | Infinite deriving (Eq,0Ord,Show)

instance Semiring Time where
nil = epoch ; unit = Infinite
plus = max ; times = min

Thus, Time is an ordered series of discrete points, beginning at the epoch, and
extending infinitely into the future.

5 In reality, floating point numbers such as Double do violate semiring axioms due to
rounding errors. Here, we stick with Doubles for simplicity.
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epoch :: Time
epoch = Finite 0

previous :: Time -> Maybe Time
previous (Finite t) | t > O = Just (Finite (t - 1))
previous _ = Nothing

Every point in time has a previous time, except epoch and Infinite. The
major implication is that a contract that expires at the epoch is unobtainable,
since a contract must be acquired strictly before its expiry date.

3.2 The Contract Semiring

The contract combinators or and both form a semiring. The former is +, the
latter x. From their informal descriptions, it is quite easy to see that both
operators are associative and commutative, and that both distributes over or.
These properties can be proved formally using the semantics defined in Section 4.

The identity contract for both is zero. Intuitively, acquiring (both ¢ zero)
acquires exactly the rights and obligations of c, with exactly the same expiry
date, since zero has neither rights nor obligations, and has an infinite expiry
date. Symbolically,

both ¢ zero =rc.

The identity for or is the contract expired, which expires at the epoch, mean-
ing that actually obtaining expired is impossible. To see why this is the neutral
element, consider that upon acquiring (¢ ‘or‘ expired), one must acquire ei-
ther ¢ or expired. Because expired expires at the epoch, the only permissible
option is to acquire ¢, symbolically,

c ‘or‘ expired = c.

Additionally, expired annihilates any other contract with respect to both:
because (both expired c) expires when the most short-lived contract expires,
it expires when expired does, at the epoch. But this exactly matches the defi-
nition of expired, symbolically,

both ¢ expired = expired.

These four combinators give rise to the following semiring instance:

instance Semiring (Contract obs) where
nil = expired ; unit = zero
plus = or ;  times = both

3.3 Beyond Semirings: Groups

A group is a fundamental algebraic concept which captures the notion that a
binary operator is invertible. In particular, it is useful to formalise the idea that
some contracts cancel each other, for example (one EUR) and (give (one EUR)).
Formally, a group is defined as:
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Definition 2 (Group). A group (R,+,0,—) is a monoid (R,+,0) equipped
with an operation (=) : R — R such that for alla € R: a+ —a=0= —a+ a.

Groups pervade mathematics. For instance, integer or real addition form groups
with negation, and real multiplication forms a group with the reciprocal, to
give but two straightforward examples. Generally, two kinds of groups can be
distinguished in a semiring, depending on whether they arise from the additive
operator (+) or from the multiplicative operator (x).

For example, the natural numbers have neither additive nor multiplicative
inverses; the integers have an additive inverse, but no multiplicative inverse;
and the rationals have both, as do the reals. Tropical semirings do not have an
additive group, but they have a multiplicative one, which is the additive group
of the underlying semiring. The Time semiring has no groups.

Formally, these groups are defined as follows:

Definition 3. Let (R,+, x,0,1) be a semiring.

— The semiring has an additive group if there exists an additive inverse (—)
such that (R,+,0,—) is a group.

— The semiring has a multiplicative group if there exists a multiplicative in-
verse ()71 such that (R\{0}, x,1,(-)~1) is a group.

— A semiring that has an additive group is called a ring. (For this reason a
semiring is sometimes also called a rig, i.e. a ring without negatives.)

— A semiring with both an additive and a multiplicative group is called o field.

Notice that an additive group has all of R as its underlying set, but a multiplica-
tive group only has R without 0. This situation is analogous to the real numbers
and other fields, where division by zero is undefined.

The Contract semiring has a (multiplicative) group: the inverse of a contract
c is the contract (give c), which reverses the rights and obligations of the
two parties. Indeed, if one party acquires c, the other party acquires (give c)
at the same time. Note that give changes the primary actor of a contract: if
one party makes a choice (e.g. c1 ‘or¢ c2) in c, the other party is entitled to
make that choice in (give c). This means that acquiring (both ¢ (give c))
is equivalent to acquiring zero, since acquiring (give c) cancels out the rights
and obligations of any contract ¢ that is not expired.”

In Haskell, we define the type classes Additive and Multiplicative for
semirings with an additive and multiplicative group, respectively:

class Semiring r => Additive r where neg :: r ->r
class Semiring r => Multiplicative r where inv :: r -> r
instance Multiplicative (Contract obs) where inv = give

Section 4.4 and below also need instances for Double and Max (Max has a multi-
plicative group if the underlying semiring has an additive group).®

" give need not cancel out expired, since the annihilator of the semiring is excluded
from the multiplicative group.
8 The partial inv is acceptable since the annihilator, NegInfty, need not be invertible.
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instance Additive Double where neg = negate

instance Multiplicative Double where inv = recip

instance (Ord r, Additive r) => Multiplicative (Max r) where
inv (Max x) = Max (neg x)

All is now in place to formally define the denotational semantics of a contract.

4 Denotational Semantics: Expiry Date and Worth

This section presents the denotational semantics of the contract language as
implemented in Haskell, using a deep embedding [4]. In this style of embedding,
the abstract syntax tree of the contract language is explicitly reified as a Haskell
data type Contract that has a constructor for each primitive:

data Contract obs
= Zero
| Both (Contract obs) (Contract obs)
| Or (Contract obs) (Contract obs)
| Give (Contract obs)
| Truncate Time (Contract obs)
| Thereafter (Contract obs) (Contract obs)
| One Currency
| Scale obs (Contract obs)
| Get (Contract obs)
| Anytime (Contract obs)

Observe that expired is not a primitive, it can be defined as:
expired = truncate epoch zero

The appendix derives this equation from the denotational semantics using straight-
forward equational reasoning. The denotational semantics itself consists of two
distinct parts: a contract’s expiry date and its worth (e.g., monetary value).

4.1 A Contract’s Expiry Date

The expiry function in Figure 2 calculates the earliest point at which its
argument contract can no longer be acquired. The definition has a case for each
constructor of Figure 1. Moreover, the expiry date of expired is:

expiry expired = expiry (truncate epoch zero)

min (expiry zero) epoch
= epoch (E1)

Recall that Time is a semiring, where nil is epoch, unit is Infinity, times is the
minimum, and plus is the maximum. Then, looking at Equation (E1) and lines
2, 3 and 4 in Figure 2, it follows that expiry preserves the semiring structure:
it (recursively) maps the nil, unit, times and plus of the contract semiring
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1 expiry :: Contract obs -> Time

2 expiry Zero = Infinite

3 expiry (Both cl c2) = min (expiry cl1) (expiry c2)
4 expiry (Or cl c2) = max (expiry cl1) (expiry c2)
5 expiry (Give c) = expiry c

6 expiry (Truncate t c) = min (expiry c) t

7 expiry (Thereafter cl c2) = max (expiry cl) (expiry c2)
8 expiry (One c) = Infinite

) expiry (Scale o c) = expiry c¢

10 expiry (Get c) = expiry c

11 expiry (Anytime c) = expiry c

Fig. 2: Expiry Date

to their counterparts in the Time semiring. Such a structure-preserving function
is called a (semiring) homomorphism. Because it preserves the compositional
nature of its argument, a homomorphism enables modular equational reasoning
about contracts.

4.2 The Bottom Line

As a rule, a contract is acquired because it is worth something to its holder.
How much depends on the real-world financial context and the time at which it
is acquired. This value is computed by the function worth (Figure 3). The main
work is done by the local function go (lines 11-23). By design, go only returns
non-nil values before the contract’s expiry date, and nil ever after:

go ¢ t =nil <t > expiry ¢ (W1)

Before the contract expiry date, go satisfies the following properties:

go expired t =nil (W2)

go zero t = unit (W3)

go (both cl c2) t=go cl t ‘times‘ go c2 t (W4)
go (cl ‘or¢ c2) t=go cl t ‘plus® go c2 t (W5)
go (give c) t =1inv (go c t) (W6)

Equations (W2-W6) state that go is a multiplicative semiring homomorphism.
That is, the worth of a contract is always interpreted in a generic multiplicative
semiring, such that go preserves the contract’s semiring structure (W2-W5) and
multiplicative inverses (W6). Equation (W2) is somewhat redundant: it follows
from Equation (W1) that go maps expired to nil.

Implementation Let us now look at each line of go in detail. Line 9 implements
Equation (W1). Lines 10-13 implement Equations (W3-W6). In Line 1/ the
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data Financial r obs =

Financial { exch :: Currency -> Time -> r
, disc :: Time -> r -> Time -> r
, snell :: (Time -> r) -> Time -> r
, eval :: obs -> Time ->r ->r }
worth :: Multiplicative r => Financial r obs -> Contract obs -> Time -> r
worth (Financial exch disc snell eval) = go where
go c time | time >= expiry c¢ = nil
go Zero time = unit
go (Both cl c2) time = go cl time ‘times® go c2 time
go (Or cl c2) time = go cl time ‘plus‘ go c2 time
go (Give c) time = inv (go c time)
go (Truncate t c) time = go c time
go (Thereafter cl c2) time | time < expiry cl = go cl time
| otherwise = go c2 time
go (One k) time = exch k time
go (Scale o c) time = eval o time (go c time)
go (Get c) time | Just t <- horizon c = disc t (go c t) time
| otherwise = nil
go (Anytime c) time | Just t <- horizon c = snell (go c) time
|

otherwise = nil

horizon = previous . expiry

Fig. 3: Worth

worth of truncate t c is simply the worth of ¢, because line 9 has already
checked that time is less than the expiry date. In Lines 15 and 16 the worth of
(c1l ‘thereafter c2) is the worth of c1 if time has not yet passed the expiry
date of c1, otherwise it is the worth of c2.

So far, all the cases have been nicely generic. However, to define the remaining
cases, we must introduce a financial model into our abstract mathematics. This
model consists of the data type Financial, which contains all the finance-specific
know-how. This knowledge is expressed in a specific currency k’, for instance
exch k tis the value, expressed in k’ of one unit of currency k, at time t. There
are some properties that the components exch, disc and snell must satisfy. For
brevity, we refer the interested reader to the original [6] for their definitions. The
meaning of these components is best explained by their usage in lines 17-23. For
instance, line 17 says that the worth of obtaining one unit of a specific currency k
isexch k t,the value at time t of one unit of k expressed in the financial model’s
currency k’. Next, line 18 defines the worth of (scale o c¢) by evaluating the
observable o at time and multiplying it with the c¢’s worth at time. This scaling
operation is captured by the function eval.

The last two cases are identical to the version in the original paper: The
penultimate case computes the worth of (get c¢) (line 19), which is the value
of the contract ¢ when it is acquired (t), but discounted to the current time
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(time). The function disc models this style of interest evolution: given a time
t and a value v at time t?, (disc t’> v t) is the interest-rate discounted value
of v at time t expressed in currency k’.

The final case computes the worth of (anytime c¢) (line 21). Upon acquiring
(anytime c), the primary party must acquire c, but they can do so at any time
between the acquisition and the expiry date of c. The idea is that it allows one
to choose to acquire ¢ when it is most valuable, possibly based on exchange
and interest rates, share prices, etc. Determining the optimal time to acquire
c is complicated, and requires finding the snell-envelope of c (line 21). The
implementation of disc and snell is beyond the scope of this paper. The original
paper briefly sketches one possible implementation in Haskell.

4.3 Comparison with the Original

There are two main difference between the original library and ours. Firstly, as
mentioned in Section 2.3, their and combinator is less expressive than our both
combinator. Secondly, the original library cannot express the expired contract,’
which has no horizon, and, as a consequence, lacks the corresponding semantic
notion: the nil of the semiring. Lacking this notion, their worth function is
partial; it is simply undefined where ours is nil.

4.4 Executable Semantics

The code presented in Figure 3 is a denotational semantics; its primary purpose
is to give a precise, formal, and generic specification. That being said, the fact
that the semantics is executable also provides a straightforward implementation,
albeit not a terribly realistic one, performance-wise.

The most immediately obvious application is to simply compute the value of
a contract. This is accomplished by the max-tropical semiring over real numbers,
Max Double. By plugging the definition of plus and times for Max into Figure 3
it is easy to see that the or of two contracts is the maximum value of either
contract, and that both simply sums the values. The worths of expired and
zero are —oo and 0, respectively. (It is helpful to think of —oco as “undefined”.)
The remaining cases in Figure 3 are determined by the financial model, static:

static :: Currency -> Double -> Financial (Max Double) (Time -> Double)

This simplistic model assumes time-invariant exchange and interest rates. The
full implementation of static can be found in the supplementary material.
Figure 4a shows the value at the epoch of progressively later ZCBs yielding
€100 (with a fixed interest rate of 7% per time step). Note that more interest
accrues if a contract is acquired longer before its expiry date, until the expiry date
is reached and the value of the contract is —oo. p is the derivative with respect
to a 1% change in the interest rate, computed via automatic differentiation [1].

9 For instance, their truncate epoch zero is not equal to our expired, because it can
still be acquired at the epoch.
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n (worth s7eur cn t0) p c (worth sOeur c tO0)
0 —oo N/A both cl c2’ 300
1 100 0 cl ‘and‘ c2’ 300
2 93 -0.87 both c0 c2’ —00
3 86.49 -1.63 cO ‘and‘ c2’ 200
4 80.44 -2.29
(a) Value of cn at the epoch. (b) Compare the behaviour of both vs. and.

Fig.4: Examples of contracts under the max-tropical semiring. Assume n €
[0,4], tn = Finite n, cn = zcb tn 100 EUR, cn’ = zcb tn 200 EUR,
s7eur = static EUR 0.07, and sOeur = static EUR 0.00.

Figure 4b once more demonstrates the difference between both and and (the
interest rate is held at 0% to make the difference more obvious). Since neither
cl nor ¢2’ has expired, both combinators behave the same, summing the values
of both contracts. However, since cO has expired, (both c0 c2’) is —oo, while
(cO ‘and‘ c2?) is equivalent to the remaining contract, c2’.

5 Conclusion

This paper has investigated the compositional nature of financial contracts from
the perspective of abstract algebra, and equipped them with a semiring structure.

The advantages are threefold: First, semirings have straightforward axioms
and properties, and admit a natural formulation of the denotational semantics as
a semiring homomorphism. This theory is beneficial for equational reasoning, as
is briefly demonstrated in the appendix, and it means that if the target domain
satisfies the axioms, the semantics is correct, at least for the compositional part.

Second, the aim of defining a contract semiring leads directly to the both com-
binator, which seems slightly more powerful than the and combinator of Peyton
Jones et al. [6], in the sense that it allows more contracts to be expressed in
the language directly. To clarify this point, consider that it is always possible
to define a contract that behaves like (both c1 ¢2) by using features from the
host language (Haskell): simply trim the expiry dates of c1 and c2 to the earlier
of the dates of c1 and c2. Such tricks are not needed when both is a primitive,
meaning that the intent of the contract is captured more precisely.

Third, formulating contracts in terms of semirings may reveal new appli-
cations inspired by semirings from the literature, such as those for automatic
differentiation!® [7,2, 1], probabilities [3], polynomials, and Kleene-Algebras [5].
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10 See the code repository for a gradient-based semantics.
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Appendix: Deriving Expired
Let us derive the implementation of expired from the semantics:

worth m k expired t
[(W2): semiring homomorphism preserves nil]
= nil
[(W1): nil =worth m k ¢ t <t > expiry c|
= worth m k (truncate t’ c) tif t > expiry (truncate t’ c)
[t > min (expiry c) t’ = expiry (truncate t’ c )]
= worth m k (truncate t’ c) tift>t’
[instantiate t’> = epoch; t > epoch]|
= worth m k (truncate epoch c) t
[instantiate ¢ = zero]

= worth m k (truncate epoch zero) t

The choice of zero for c in the derivation is immaterial; any contract would
do. Moreover, there are other forms of contracts that behave like expired. For
instance, (get zero) is also nil everywhere, because the getting a contract with
an infinite expiry date is ill-defined, i.e., nil. The definition above is preferable
because it relies only on the non-finance specific part of the semantics.
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