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Abstract
The basics of logic programming, as embodied by Prolog, are generally well-known in the pro-
gramming language community. However, more advanced techniques, such as tabling, answer
subsumption and probabilistic logic programming fail to attract the attention of a larger audi-
ence. The cause for the community’s seemingly limited interest lies with the presentation of these
features: the literature frequently focuses on implementations and examples that do little to aid
the understanding of non-experts in the field. The key point is that many of these advanced logic
programming features can be characterised in more generally known, more accessible terms. In
my research I try to reconcile these advanced concepts from logic programming (Tabling, An-
swer subsumption and probabilistic programming) with concepts from functional programming
(effects, monads and applicative functors).
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1 Introduction

Logic programming is—or has the potential to be—one of the most declarative program-
ming paradigms. In fact, the essentials of logic programming, are generally well-known in
the programming language community, and almost every computer scientist has had some
exposure to Prolog.

Unfortunately, more advanced features, or more recent advances in logic programming fail
to attract the attention of a larger audience beyond the logic programming community. For
instance, several Prolog systems, such as XSB [19], Yap [16], B-Prolog [26] and most recently
SWI-Prolog [24], support a more advanced form of resolution, SLG-resolution, also called
tabling. Sadly, this very useful technique is completely unfamiliar to most programming
language researchers that are not active in logic programming. This sometimes leads to the
technique being reinvented in some very specific setting, for example for parsing.

Similarly, probabilistic logic programming extends regular logical programming to the
realm of probabilistic computation, while still retaining the basic logical semantics. For
example, the ProbLog system [2] is a simple syntactic extension of Prolog, where Prolog
clauses can be annotated with probabilities. Such a system admits declarative specification
of many probabilistic problems. ProbLog additionally supports many powerful probabil-
istic inference modes. However, the larger probabilistic programming community remains
ignorant of these features.
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The cause for this apparently limited interest from the community lies with the present-
ation of these features: the literature frequently focuses on implementations and examples
that do little to aid the understanding of non-experts in the field. The key point is that
many of these advanced logic programming features can be characterised in more generally
known, more accessible terms. For example, the behaviour of logic programs is often form-
alised by fixed points of functions. In particular, Van Emden’s concise and elegant fixed
point semantics for Prolog, is a prime example of this approach.

The benefits of adopting a more general, abstract presentation are mutual and twofold:
1. By recasting (advanced features of) logic programming in a more general light, a fair

comparison with similar functional systems becomes possible.
For instance, functional logic programming systems claim to be more expressive than
their logical counterparts. In a general framework, objective verification of such claims
is possible, and moreover cross-pollination can proceed in a natural way.

2. The functional programming community has amassed a wealth of techniques that deal
with and use non-standard control-flow. These now become readily available to the logic
programmer. Recent examples of this are delimited control [3] and effect handlers [7, 15].
Here the benefits are clearly mutual: Delimited control is applied to capture tabling in
a functional context. As a side-effect tabling is reduced to its essence, which in turn
enables a very compact (logic programming) implementation.

Currently, my research focuses on two main areas: probabilistic (functional & logic) pro-
gramming languages, and formalising tabling with answer subsumption for logic programs,
which is a more advanced version of tabling.

2 Background

2.1 Probabilistic Programming Languages
Probabilities are an indispensable tool for dealing with uncertainty in real-world scenarios.
They allow us to quantify missing information and thereby reason with incomplete know-
ledge. This key insight is a the root of many advances in artificial intelligence: from machine
learning and data mining, to natural language processing (NLP), information retrieval (IR)
and automated reasoning. Traditionally, probabilistic models and their inference routines
are tightly coupled in a single implementation, necessitating their re-implementation when
the same inference technique is used for a different model. Universal probabilistic program-
ming languages instead provide a generic platform to express probabilistic models and their
inference routines. For example, consider a simple ProbLog program that models a fair coin:

coin(c).
0.5 :: heads(X) :- coin(X).

The result of the query heads(X) is a probability distribution which is true (with X = c)
with probability 0.5.

Obviously, a single lingua franca for probabilistic programming enables much more ef-
ficient communication and reuse of algorithms. However, in practice the probabilistic pro-
gramming landscape is highly fragmented due to the sheer number of incompatible prob-
abilistic programming languages. Often these languages belong to completely different
paradigms, from Object Oriented Programming (Microsoft’s Infer.NET [11]); Logic Pro-
gramming (ProbLog [2], PRISM [8]); Functional Programming (Church [5], Anglican [25]);
and hybrid systems (Factorie [10], Figaro [13]).
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Thus, while probabilistic programming was originally intended to unify AI-discourse on
the subject, the lack of provisions for interoperability between the systems has only served
to divide it further.

Clearly, what is needed is a single theory or framework that explains the relative cap-
abilities of the different systems. When two systems are equivalent (that is, they possess
the same capabilities), it should be possible to translate one system into the other and
vice-versa.

Recently there has been much interest, from both functional and logical communities
in using monads to model the semantics of probabilistic programming languages [4, 14].
Monads are a concept from category-theory, an abstract branch of mathematics. Initially,
Moggi [12] proposed them as a way to structure compositional denotational semantics of
programs. This compositionality has proven incredibly useful for implementing side-effects
in pure functional programming languages such as Haskell [22]. Monads (and other similar
category-theoretic structures) may be precisely the tool that is needed to unite the disparate
branches of probabilistic programming.

2.2 Tabling with Answer Subsumption
2.2.1 Tabling
Tabling [23, 19] is a well-known and extensively studied extension of standard Prolog. The
main benefit of tabling is that it brings the behaviour of many logic programs in line with
their standard logical semantics. In more practical terms, it frees the Prolog programmer
from worrying about more operational concerns such as clause and goal ordering. Addi-
tionally, it can dramatically speed-up the execution of a program, in exchange for higher
memory consumption. Tabling has been implemented in various Prolog systems such as
XSB [19], Yap [16], B-Prolog [26] and SWI-Prolog [24].

Consider the following program defining a graph containing three nodes arranged in a
cycle. The edges are modelled by the e/2-predicate, while p(X,Y) holds if there is a path
between X and Y.

:- table p/2.
e(1,2).
e(2,3).
e(3,1).

p(X,Y) :- p(X,Z),e(Z,Y).
p(X,Y) :- e(X,Y).

The :-table p/2-directive indicates that tabled resolution should be used when evaluat-
ing p/2. Under normal Prolog execution, the order of the clauses would cause an infinite
loop, while with tabled execution the program produces all possible combinations and then
terminates. Note that termination cannot be achieved with regular execution, even if we
permute the program’s clauses and bodies, since the graph contains a cycle. The technique
is called tabling, because answers are stored in a data structure, called a table while the
program is executed. In this fashion the Prolog system can keep track of the answers it has
already seen.

2.2.2 Answer Subsumption and Tabling Modes
Some Prolog systems support an extension of tabling that we call Answer subsumption,
using Swift and Warren’s nomenclature [18], often implemented as a set of tabling modes [6].
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Answer subsumption, specifies how answers should be aggregated in the table. Subsumption
refers to the fact that the original answers are replaced by their aggregates, that is, they are
subsumed.

Consider the following program where we use answer subsumption to compute the length
of the shortest path in a graph.

:- table p(index,index,min).

e(1,2).
e(2,3).
e(3,1).

p(X,Y,1) :- e(X,Y).
p(X,Y,D) :- p(X,Z,D1),p(Z,Y,D2), D is D1 + D2.

The directive :-table p(index,index,min) specifies the tabling mode of each argument
of the p/3 predicate: the first two arguments serve as indexes into the table, while the final
argument uses the min mode indicating that only the smallest answer must be retained.
This means that if the table contains an answer p(X,Y,D) for any X and Y after the program
has been executed, then D must be the length of the shortest path from X to Y. Instead of
table modes, XSB uses lattice and partial order answer subsumption modes, which allow
the user to specify an arbitrary predicate (subject to some mild conditions) to aggregate
answers.

Using answer subsumption can yield very compact and efficient programs for optimisation
problems, especially those that are instances of Dynamic Programming [6].

Unfortunately, none of the existing implementations that we are aware of are generally
sound. Consider the following pure logic program:

p(0). p(1).
p(2) :- p(X), X = 1.
p(3) :- p(X), X = 0.

The query ?-p(X) has the finite set of answers p(0),p(1),p(2),p(3), the largest of which
is p(3). However XSB, Yap and B-Prolog all yield different (invalid) solutions when answer
subsumption is used to obtain the maximal value. Both XSB and B-Prolog yield X = 2,
with a maximum aggregation and max table mode respectively. Yap (also with max table
mode) yields X = 0; X = 1; X = 2, every solution except the right one.

The problem is exacerbated by the fact that none of the systems formally define the
semantics of answer subsumption. In a recent ICLP paper [20], we try to resolve this
issue by giving a formal semantics for answer subsumption. We then examine under which
conditions the systems are sound according to this semantics. Please see Section 3.1.1 for a
short overview.

3 Objectives

The research mostly proceeds along two tracks: (1) we investigate the connection between
functional programming and tabling with and without answer subsumption; (2) we invest-
igate probabilistic logic programming–as embodied by the ProbLog system–from the func-
tional perspective, in order to develop a general semantics for probabilistic programming
languages. The semantics of probabilistic programs directly depends on the least-fixed point
semantics mentioned above. Tabling approximates these semantics, and therefore frequently
appears as an aspect of these probabilistic programming languages.
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3.1 Current Status of the Research and Preliminary Results

3.1.1 Tabling with Sound Answer Subsumption
As mentioned in Section 2, Answer Subsumption, while very useful in practice, lacks a
formally defined semantics, which hampers the user’s ability to reason about the behaviour
of his or her programs. In fact, without a formal semantics, we are reduced to reasoning
based on intuitive knowledge of the implementation of a particular system, which is distinctly
unportable, and even less satisfying.

In very recent work [20], we have attempted to mitigate this problem by defining what
we believe is an appropriate denotational semantics, based on least fixed points of monotone
functions on complete lattices. A complete lattice is a partially ordered set (poset) 〈L,≤L〉
such that every X ⊆ L has a least upper bound

∨
X, i.e.:

∀z ∈ L :
∨
X ≤L z ⇐⇒ ∀x ∈ X : x ≤L z

It is a well known result from lattice theory that least fixed points of monotone functions are
guaranteed to exist. Our semantics is based on Van Emden’s well known least fixed point
semantics, which uses an immediate consequence operator TP : P (HP ) → P (HP ), where
HP is the Herbrand base, the set of all ground atoms of a program P . Then the logical
semantics (for definite programs, that is programs not containing negations) is given by its
least fixed point, lfp(TP ).

In our work, we define a similar operator T̂P : P (HP ) → P (HP ), that takes answer
subsumption into account. We do so by showing that most tabling modes can be modelled
by a semi-lattice L, with functions η : HP → L and ρ : L → P (HP ) to convert between
ground atoms and L. The semantics of a tabled logic program using answer subsumption is
then given by

ρ
(∨

x∈lfp(T̂P ) η(x)
)

That is, we take the least fixed point of T̂P , then convert this least fixed point to the lattice
L where we aggregate it, and finally convert this aggregate to a set of ground atoms. It is
important to note that we assume that the program is stratified, and T̂P is operating on a
single stratum. The full details are beyond the scope of this text.

Finally, note that the semantics we have specified differs in an important way from
actual subsumption implementations: this semantics only aggregates and subsumes answers
after the least fixed point has been computed, while implementations generally execute
subsumption in lock-step with the derivation of new answers.

In the paper we prove a theorem that specifies when an implementation is sound, i.e.
when the difference alluded to above, does not produce different answers. Using the theorem
requires that a programmer proves certain properties about their program, which may be
difficult for realistically sized programs. Nevertheless, we believe this is an important first
step towards formalisation of answer subsumption.

3.1.2 Fixing Non-determinism
In a recent paper [21] we reduce tabling (with and without answer subsumption) to its
functional essence. Two key elements remain: recursion and non-determinism. This has the
advantage, for instance, that this presentation is not muddled by answer variance: Prolog
systems must avoid adding an answer if there is already a variant of the answer in the table.

ICLP 2016 TCs



NNN:6 The functional perspective on advanced logic programming

Most languages don’t have unification (and therefore no notion of variance), thus answer
variance is an irrelevant detail that can be ignored.

The contributions of this work are:
We define a monadic model that captures both non-determinism and recursion. This
yields a finite representation of recursive non-deterministic expressions. We use this rep-
resentation as a light-weight (for the programmer) embedded Domain Specific Language
to build non-deterministic expressions in Haskell.
We give a denotational semantics of the model in terms of the least fixed point of a
semantic function RJ · K. In fact, the semantics closely resembles the TP operator men-
tioned previously. The semantics is subsequently implemented as a Haskell function that
interprets the model.
We generalise the denotational semantics to arbitrary complete lattices. We illustrate
the added power on a simple graph problem, which could not be solved with the more
specific semantics. This new semantics corresponds to tabling with answer subsumption.
We provide a set of benchmarks to demonstrate the expressivity of our approach and
evaluate the performance of our implementation.

3.2 Open Issues and Expected Achievements

3.2.1 Automatic Verification of Sound Answer Subsumption
In the paper mentioned in Section 3.1.1, we define a high-level semantics for answer sub-
sumption based on lattice theory. Then we generalise it to establish a correctness condition
indicating when it is safe to use (greedy) answer subsumption implemented by most tabling
systems. We show several examples where the existing implementations of answer subsump-
tion fail that condition and derive an erroneous result.

This condition is sufficient, but not necessary: there exist programs that do not satisfy
the condition, for which the greedy strategy nevertheless delivers correct results. Since we
have not run across any non-contrived examples of such programs, we believe that this
apparent lack of necessity is an artefact of our rather coarse semantics, which we intend to
refine in the future.

The verification of correctness constitutes a non-trivial effort. Hence, manually proving
the correctness condition for realistically sized programs could be unfeasible in practice.
Ideally we would have an automated analysis that warns the programmer if it fails to estab-
lish the correctness condition.

One promising avenue of research is the fact that the program needs to be stratified, and
the correctness condition need only hold for the stratum under consideration.

Currently the stratification is also rather coarse. A more fine-grained stratification should
significantly reduce the work involved in proving the correctness condition. For automation
purposes, abstract interpretation [1] could be used to statically inspect a program, or if we
relax our requirements, a dynamic approach could be taken, that warns the programmer
that the obtained answers are unreliable during or after the execution of the program

3.2.2 Algebraic Structures for Probabilistic Programming
Within the functional programming community the use of monads for probabilistic pro-
gramming is both pragmatic and more theoretical. On the one hand several people, e.g.
Scibior et al. [17] have developed efficient monadic interfaces for well-known probabilistic
inference algorithms. A functional programmer can then use these interfaces to model a
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probabilistic problem monadically. On the other, there has been much research towards a
measure theoretic formalisation of such monadic probabilistic programs [14].

However, little has been done into other more general algebraic structures related to
monads. In particular, so called applicative functors or idioms [9] appear to model precisely
those programs where the structure of the program is static, with respect to probabilistic
choices that are made. This is especially relevant for probabilistic logic systems such as
ProbLog, where the structure of the clauses is fixed. Moreover, as these structures are more
restrictive, they may actually admit faster inference routines. Or conversely, ProbLog’s
specialised inference may apply to probabilistic programming languages that have applicative
structure. There are already some promising early results, for instance, it is cleary that
ProbLog programs exhibit applicative structure. However, the implications of these results
are not yet fully understood, and are subject of ongoing research.
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