
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

PλωNK:Functional Probabilistic NetKAT

ALEXANDER VANDENBROUCKE, KU Leuven, Belgium
TOM SCHRIJVERS, KU Leuven, Belgium

This work presents PλωNK, a functional probabilistic network programming language that extends
Probabilistic NetKAT (PNK). Like PNK, it enables probabilistic modelling of network behaviour,
by providing probabilistic choice and infinite iteration (to simulate looping network packets). Yet,
unlike PNK, it also offers abstraction and higher-order functions to make programming much more
convenient.

The formalisation of PλωNK is challenging for two reasons: Firstly, network programming induces
multiple side effects (in particular, parallelism and probabilistic choice) which need to be carefully
controlled in a functional setting. Our system uses an explicit syntax for thunks and sequencing
which makes the interplay of these effects explicit. Secondly, measure theory, the standard domain
for formalisations of (continuous) probablistic languages, does not admit higher-order functions. We
address this by leveraging ω-Quasi Borel Spaces (ωQBSes), a recent advancement in the domain
theory of probabilistic programming languages.

We believe that our work is not only useful for bringing abstraction to PNK, but that—as part
of our contribution—we have developed the meta-theory for a probabilistic language that combines
advanced features like higher-order functions, iteration and parallelism, which may inform similar
meta-theoretic efforts.

Additional Key Words and Phrases: Probabilistic Programming, Network Modelling, Quasi-Borel
Spaces, ω-QBS, NetKAT

1 INTRODUCTION
Probabilistic programming languages simplify the creation of probabilistic models. They sepa-
rate the model from the algorithm that infers probabilities for it (e.g., Church [Goodman et al.
2012], Anglican [Wood et al. 2014], Gen [Cusumano-Towner et al. 2019], ProbLog [Fierens
et al. 2015]). Instead of writing a custom procedure tailored to a particular model, the
same generic algorithm is used for all programs written in the programming language. Thus,
the algorithm can be re-used for many programs, lessening the implementation effort and
maintenance burden of the probabilistic model.
In this work we develop a probabilistic programming language, called PλωNK.1 PλωNK

combines diverse features such as higher-order functions, probabilistic choice and parallelism.
It is a domain specific language for probabilistically modelling computer networks. The main
purpose of PλωNK is to model computer networks and network protocols at an abstract
level, and verify a wide variety of properties of such models, e.g., latency, fault-tolerance,
or the absence of routing loops. The motivation is the same as for formal verification of
computer programs or the mechanical checking of proofs. Namely, during the design of
complex networks or protocols, even the best designers are bound to make some mistakes
or errors. A computer-checked specification can detect such deficiencies before they are
deployed [Anderson et al. 2014; Foster et al. 2016].
1Pronounced as “plonk”.

Authors’ addresses: Alexander Vandenbroucke, KU Leuven, Celestijnenlaan 200 A, 3001, Leuven, Belgium,
alexander.vandenbroucke@kuleuven.be; Tom Schrijvers, KU Leuven, Celestijnenlaan 200 A, 3001, Leuven,
Belgium, tom.schrijvers@kuleuven.be.

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Alexander Vandenbroucke and Tom Schrijvers

PλωNK extends Probabilistic NetKAT (PNK) [Foster et al. 2016]. Here is a small PNK
program:(

sw = 1 ; drop ⊕0.1 sw ← 2︸ ︷︷ ︸
node 1

& sw = 2 ; drop ⊕0.1 sw ← 1︸ ︷︷ ︸
node 2

)∗
1 2

10%

The program on the left models the network on the right. This network consists of only
two nodes, 1 and 2, with a bidirectional link between them. The link between the nodes is
unreliable, e.g., it is a radio link with poor reception. This causes a 10% of the packets to
be lost in transit.
At this point it is not important to understand the meaning of this program exactly.

Instead, note that this example already features a lot of repetition: the sub-programs to the
left and to the right of the &-operator—modelling the behaviour of node 1 or 2, respectively—
essentially mirror each other. Unfortunately, PNK offers no facilities to take advantage of
this insight. The key advantage of PλωNK over PNK is that we can exploit it by abstracting
over the behaviour of both parts using functions:

forward = λsrc.λdst.(sw = src; drop ⊕0.1 sw ← dst)
(forward 1 2︸ ︷︷ ︸

node 1

& forward 2 1︸ ︷︷ ︸
node 2

)
∗

1 2
10%

The function forward captures the general forwarding behaviour of the nodes, indepen-
dently of a particular node. While this change arguably does not make the program shorter,
the improved readability and maintainability make writing and extending the program much
more convenient. For instance, adding a third node is now much easier:

forward = λsrc.λdst.(sw = src; drop ⊕0.1 sw ← dst)
(forward 1 2︸ ︷︷ ︸

node 1

& forward 2 3︸ ︷︷ ︸
node 2

& forward 3 1︸ ︷︷ ︸
node 3

)
∗ 1 2

3

10%

10
%

10%

Explicit Syntax for Thunks and Sequencing. Three distinct side-effects are in evidence in
the above examples: (1) state—as we explain later, sw ← 1 modifies packets; (2) parallelism—
the subprograms for node 1, 2 and 3 are run in parallel with &; and (3) probability—through
the ⊕0.1-operator. We carefully chose the previous example such that no arguments to the
function contained any side-effects. Indeed, all arguments were constants, either 1, 2 or 3.
Although this is already quite useful, we want to be more flexible in our full language, and
also apply functions to non-constant expressions. In this case, should the side-effects of
this expression be executed before the application and only the resulting value passed to
the function (Call-By-Value)? Or, should the expression remain unevaluated, allowing the
function to decide when to evaluate it (Call-By-Name)? Both strategies have their merits
and there is no clear winner.
Rather than fix any particular order, we choose to explicitly segregate expressions into

computations (which have side-effects) and values (which do not), loosely inspired by Call-
By-Push-Value [Levy 2001].

The sequencing of side-effects then becomes explicit: either the computation is evaluated,
producing a value which is then passed to the function, or the computation is explicitly
turned into a value, by wrapping it in a thunk. While we use CBPV as an inspiration for the
syntax and semantics, our language does not enjoy all theoretical properties of CBPV and
thus does not model CBPV exactly.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

PλωNK:Functional Probabilistic NetKAT 1:3

Semantics. Our language, PλωNK, has higher-order functions, iteration and probabilistic
choice. This significantly complicates the formalisation of the semantics of our language. After
all, the standard approach to define denotational semantics for a continuous probabilistic
language is based on measure theory. Yet, measure theory does not support general higher-
order functions [Aumann et al. 1961], a central feature of our language. Thus, to support
higher-order functions, we use (ω-)Quasi-Borel Spaces [Heunen et al. 2017; Vákár et al.
2019] as the domain of our denotational semantics. This is a recently developed alternative
axiomatisation of probability theory, which admits higher-order functions. Moreover, it
possesses the ωCPO structure required to model PNK style iteration (Kleene-star).
Another challenge we face is the interaction of higher-order functions, state, parallelism

and probability. In our language, a computation can produce a function in a manner that is
simultaneously probabilistic and non-deterministic (parallel), and also locally2 modifying
state. Moreover, we must avoid accidentally duplicating work of parallel branches, since
parallel composition (&) is not idempotent (i.e., a program p is not equivalent to p& p). As a
result, defining the correct semantics for function application and sequencing is complicated
and highly non-trivial. Note that this challenge is present in any calculus that supports
function application, probability, parallelism and state—in fact, it is somewhat easier in our
setting, as side-effects cannot occur in function arguments.

As we mentioned earlier, PλωNK’s primary purpose is the specification of network models
and the verification of properties of those models. It shares this purpose with PNK, which has
several computational properties that make it well suited for this purpose: The denotational
semantics of PNK can be approximated [Smolka et al. 2017b] computationally, through
an iterative procedure. Moreover, at the cost of disallowing the dup operation, PNK has
decidable program equivalence [Smolka et al. 2017a, 2019]. Thus, if we show that a small—
hence, easy to prove correct—program is correct, we implicitly show that all equivalent
larger programs are also correct.
We show that our language also possesses these properties, subject to some (minor)

restrictions: the approximation procedure exists, if we forbid parallel choice between functions.
Essentially, this restricts PλωNK’s parallelism to the parallelism that is present in PNK.
Also, we conjecture that disallowing the dup operation, as for PNK, results in decidable
program equivalence for PλωNK. The specific contributions of this work are:
• We define the probabilistic programming language PλωNK, for modelling computer
networks and protocols. It features higher-order functions, probabilistic choice and
parallelism. PλωNK extends the earlier programming language PNK.
• PλωNK extends PNK with a simple type system. The type system is important, not
only for rejecting invalid programs, but also to ensure that all programs Strongly
Normalise [Pierce 2002]. On the one hand, strong normalisation indirectly makes our
denotational semantics well-defined. On the other hand, we exploit this property for
compiling PλωNK to PNK. Recall that PλωNK is a specification language, and the
flexibility of general recursion and real arithmetic is not required.
• We define denotational semantics for PλωNK. As PλωNK contains higher-order func-
tions, iteration and probabilistic choice, we need to leverage recent advances in the
domain theory for probabilistic programs by Vákár et al. [2019]. They define an al-
ternative formalisation of probability theory that admits higher-order functions, and
iterations, the ω-Quasi-Borel Spaces (ωQBSes).

2By local, we mean that the state is not shared between different parallel or probabilistic branches.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Alexander Vandenbroucke and Tom Schrijvers

We prove several well-definedness theorems about this denotational semantics. The (pen-
and-paper) proofs for several of these theorems use logical relations whose definitions
are interesting in their own right. We also prove that this semantics is a conservative
extension of PNK’s semantics as given by Smolka et al. [2017b]. The proofs themselves
can be found in Appendix ??.
• We develop a subclass of PλωNK programs which can be compiled into PNK. Through
the type system, we restrict the parallelism in PλωNK to the parallelism present in
PNK. This makes the values that are produced in parallel more predictable, allowing
compilation to succeed. Moreover, PNK itself lies entirely within this class. We have
mechanised the meta-theory of PλωNK and the compilation procedure with the aid
of the Abella proof-assistant [Gacek 2008]. Theorems bearing a check mark (X) have
been mechanised. The proof scripts are available in the supplementary material.
Compilation preserves the denotational semantics of PλωNK. Since our semantics is a
conservative extension, the compiled PNK program behaves identically to the original
PλωNK source program. These theorems are not easily encoded in Abella, and thus
have been proven the classical way, with pen and paper (See Appendix ??).
• We have implemented a prototype of PλωNK in Haskell. The prototype implements
a small extension to PλωNK that performs type reconstruction. The implementation
can be used to run the small examples that are presented in this article. It is part of
the supplementary material.

2 OVERVIEW
2.1 A Brief Introduction to PNK
The central notion of PNK are packet histories, i.e., ordered sequences of packets. We write
π ::h for a history consisting of its most recent packet π, followed by the earlier history h.
The empty history is written as 〈〉. The set of all packet histories is denoted PH .

PNK programs operate on sets of these histories. Packets themselves are intended to be a
simplified model of real-world binary network packets. As such, they consist of a number
of header fields, which are assigned numeric values. Contrary to real-world packets, they
do not contain a payload, because it is irrelevant for routing decisions. In our examples we
commonly use the following headers: the switch the packet is currently at (sw) and the port
the packet is currently at (pt).
PNK programs are constructed by composing a number of primitive operations. These

primitives are predicates (e.g., drop or sw = 1), assignments (e.g., pt← 2), and duplication.
Recall that PNK programs operate on sets of packets histories. Predicates filter this set,
allowing only specific histories. For instance, tests such as sw = 1 only allow histories where
the first packet’s header sw is set to 1, whereas drop denies all packets, producing an empty
set. Assignments instead modify the histories in the set. For instance, the expression pt← 2
sets the pt header to 2 for the first packet of every history. Duplication dup duplicates and
prepends the first packet of every history in the set, i.e. for history π :: h, dup produces a
history π :: π :: h.
Primitive operations can be composed in three ways:3 sequentially, parallelly or prob-

abilistically. Sequential composition (;) executes both operations one after the other, the
output of the first becoming the input of the second. For instance, sw = 1 ; pt← 2 first filters
out all histories where the sw header of the first packet is not 1, and then modifies the pt

3Actually, there is a distinction between composition for predicates and other operations, but it is not
relevant here.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

PλωNK:Functional Probabilistic NetKAT 1:5

Network

1

2 3

4

10
%

PNK
Topology
t =

(
sw = 1 ; pt = 2 ;
(sw ← 2 ; pt← 1)⊕0.9 drop

)
& (sw = 1 ; pt = 3 ; sw ← 3 ; pt← 1)
& (sw = 2 ; pt = 4 ; sw ← 4 ; pt← 2)
& (sw = 3 ; pt = 4 ; sw ← 4 ; pt← 3)

Routing
p = (sw = 1 ; pt← 2)&(sw = 2 ; pt← 4)

PλωNK
Prelude
send = λsrc.λdst.(sw = src ; pt = dst)
recv = λsrc.λdst.(sw ← dst ; pt← src)
link = λsrc.λdst.(send src dst ; recv src dst)

forward = λsrc.λact.(sw = src ; force act)
to = λdst.(pt← dst)

Topology
t = (send 1 2 ;(recv 1 2⊕0.9 drop))
& link 1 3& link 2 4& link 3 4

Routing
p = forward 1 (thunk (to 2))

& forward 2 (thunk (to 4))
p′ = forward 1 (thunk (to 2⊕0.5 to 3))

& forward 2 (thunk (to 4))
& forward 3 (thunk (to 4))

Main Expression
(p ; t)

∗
; sw = 4

Fig. 1. PNK and PλωNK models of a small network consisting of 4 nodes.

header of the first packet of every history. Parallel composition (&) executes both operations
independently and then takes the union of the resulting sets. For instance, sw = 1& sw = 2
allows only packet histories that have the first packet’s header set to either 1 or 2. Finally,
probabilistic choice (⊕r) chooses either the left side with probability r, or the right with
probability 1− r. For instance sw ← 1⊕0.5 sw ← 2, probabilistically chooses to set the first
packet’s header to 1 or to 2. If we sample from this expression, we see a set where the first
packets’ headers are either all set to 1, or all set to 2. The probability of either event is 50%.

2.2 Modelling in PNK
Let us consider how to model the network shown in the top-left corner of Figure 1 in PNK.
The network consists of four nodes, with links from node 1 to nodes 2 and 3, and from nodes
2 and 3 to node 4. The objective is to send a network packet from node 1 to node 4, routed
through either node 2 or node 3.
In order to accurately model the network, the program must model two independent

aspects: the network topology, that is, the links connecting the nodes (and their behaviour),
and the routing programs running on the nodes, receiving and forwarding incoming packets.
The PNK program modelling the network is shown on the left of Figure 1.

Topology. The topology is captured by the term t on the left-hand side of Figure 1. It is a
parallel composition of terms. It models, from top to bottom, the links from 1 to 2, from
1 to 3, from 2 to 4 and from 3 to 4. Each of the links consists of a number of statements,
composed sequentially. For each link, it is verified that a packet is actually at the origin of

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Alexander Vandenbroucke and Tom Schrijvers

the link by a series of guards (e.g., sw = 1 ; pt = 3, for the link from 1 to 3). Then, the packet
is modified, setting sw and pt to the next switch on the link (e.g. sw ← 3 ; pt ← 1), thus
transmitting the packet across the link. For the link between 1 and 2, we model unreliability
by making a probabilistic choice (⊕0.9), choosing normal transmission 90% of the time and
dropping (with drop) the packet 10% of the time. Packets that do not match the switch and
port are rejected before their headers are modified.

Routing. The routing program is captured by the term p, a parallel composition of the
routing programs for each node. For each node, it is verified that the sw field matches the
node, and a node-specific routing program is then run: at node 1, packets are forwarded to
node 2 and at node 2 packets are forwarded to node 4. Node 3 is unused for now.

Main Expression. The main expression (at the bottom of Figure 1) combines topology and
routing, and provides an exit predicate. The (·)∗, Kleene star, means iteration. Thus, the
program p ; t is repeated until the exit predicate sw = 4 is satisfied. This predicate checks
that the packet has arrived at node 4, its destination.
Having a PNK model of our network allows us to estimate the probability of certain

queries, such as the probability that a packet reaches its destination (90% in this case)
or measure the expected congestion. This is by no means an exhaustive list. A slightly
modified program permits us to estimate the latency (i.e., the average length of a path), or
by restricting the language, program equivalence becomes decidable, creating an easy way to
verify correctness [Smolka et al. 2017a]. For additional examples and details, the interested
reader should consult the work of Foster et al. [2016].

2.3 Extending PNK with functions
Even the small example from the previous section is quite tedious and repetitive to write.
The root cause of this issue is the complete lack of abstraction facilities in PNK, since it is
well-known that abstraction improves modularity and enables code re-use.

Arguably one of the most basic abstraction facilities available in programming languages
is the venerable λ-abstraction. In PλωNK, which additionally supports λ-abstractions, we
instead encode the network topology (which features a lot of repetition) more concisely.4
First we identify several recurring patterns and give them appropriate names. These are
shown in the top-right corner of Figure 1. The primitive patterns are sending and receiving.
which are combined to create a link. Functions such as send, recv and link could be defined
in a library or a language prelude, to be reused by other programs.

We can now re-write the topology as show on the right of Figure 1. The links from 1 to 3,
2 to 4 and 3 to 4 simply call the appropriate function. The link from 1 to 2 must directly
rely on sending and receiving, but even here, we can see the benefits of the approach in
reducing duplication.

The functional re-write of the routing program p features a more advanced use of functions
(program p on the right-hand side of Figure 1). The function forward takes a source
node (src) and a forwarding action act to perform. This action is a thunk, a suspended
computation, which can be executed or forced, with the primitive force. The justification for
these constructions is explained in the next section. Since thunks are essentially functions,

4The code presented here is untyped, for didactic purposes. From Section 3 onwards we will use typed
PλωNK, although type reconstruction for PλωNK is not difficult.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

PλωNK:Functional Probabilistic NetKAT 1:7

forward is a higher-order function. A more extensive use of higher-order functions can be
found in the Gossip Protocols example provided with the supplementary material.5
To create the action act we use the function function to. This function sets the packet’s

pt header to the given destination dst .
In p, the forwarding program for node 1 calls to, immediately suspends the call (using

thunk), and passes it to forward . Forwarding for node 2 proceeds in a similar fashion.
The main expression is as before. Due to the additional structure, the readability of the

program has improved considerably. Furthermore, code re-use has gone up, making the
program easier to change. For instance, to model an additional link, from 1 to 4, we only need
to add the call (link 1 4), instead of the more lengthy (sw = 1 ; pt = 4 ; sw ← 4 ; pt← 1).

For another example, suppose we want to change the forwarding behaviour of our network,
such that node 1 now chooses to forward to either node 2 or node 3 with equal probability,
then we need only extend p slightly, obtaining p′. The necessary additions have been
highlighted in Figure 1. In short, this section demonstrates the advantage for readability
and maintainability that PλωNK provides.

2.4 Explicit Thunks and Sequencing
As we have shown in the previous section, it is highly desirable that functions are higher-
order, in the sense that functions—and PNK expressions—can occur as arguments to other
functions (e.g., forward). Then it seems reasonable to expect to be able to write the following:

sw ← 0 ;(λx.sw = 1) (sw ← 1)

However, this presents an issue, since sw ← 1 has a side-effect: it sets a header in the packet.
The evaluation order is now important: if sw ← 1 is evaluated before the application, this
program accepts the packet, otherwise it drops the packet. The former corresponds to a
Call-By-Value (CBV) order, the latter to a Call-By-Name (CBN) order. There is no clear
reason to prefer one over the other, and both are useful in practice.

Indeed, we decide to not fix any particular evaluation order. Instead, we segregate terms
into values and computations, inspired by the syntax of Call-By-Push-Value (CBPV) [Levy
2001]. Computations can be evaluated (possibly with side-effects), as opposed to values,
which cannot be directly evaluated. Functions (classified as computations themselves) can
only be applied to values. PNK terms are also computations, so the expression above is
invalid in PλωNK syntax, since sw ← 1 is not a value.

Instead, we obtain two possible variants, depending on whether CBV or CBN is intended
(here the to is a primitive, not the function to defined earlier):

CBV: sw ← 0 ;(sw ← 1) to y.((λx.sw = 1) y)
CBN: sw ← 0 ;(λx.sw = 1) (thunk (sw ← 1))

In the first case, the primitive to (sequencing) evaluates sw ← 1, including side effects, and
binds the value that is produced to the variable y, followed by applying the function to y.
In the second case, sw ← 1 is thunked, and the function is applied to this thunk instead.

2.5 Semantics of Iteration
Foster et al. [2016] define the semantics of PNK in terms of measure theory. Semantically, a
program denotes a function that maps sets of packet histories to a probability distribution
over sets of packet histories. For example, the program src = 1, given input set A, returns

5https://bitbucket.org/AlexanderV/probnetkat-lambda/src/1d12d/gossip-protocols.pnk

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

https://bitbucket.org/AlexanderV/probnetkat-lambda/src/1d12d/gossip-protocols.pnk

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Alexander Vandenbroucke and Tom Schrijvers

a probability distribution that has probability 1 at the set {π :: h ∈ A | π.sw = 1} (the
notation π.sw refers to the value of the sw header of π) and is zero everywhere else.

Iteration (*) is defined as an infinite stochastic process. The formalisation of this process
is quite involved. Smolka et al. [2017b] give an equivalent, but much simpler definition, based
on standard notions from domain theory.
In our work we retain this much simpler second definition, but extend it to support

higher-order functions. However, since their domain is measure-theoretic, it does not support
such functions. For this reason, we cannot use their domain directly. Instead, we rely on
ωQBS, a domain developed by Vákár et al. [2019], which has domain-theoretic structure,
supports measure-theory-like operations and admits higher-order functions.

2.6 Key Ideas
Denotational Semantics. We give a denotational semantics to our language within the

ωQBS framework. In addition to PNK’s semantics, ours also manages variable environments,
and passes values (e.g. headers, constants, thunks) instead of just sets of packet histories.
The well-definedness of the semantics depends on two properties: First, to apply the

domain-theoretic approach, we need to show that a specific notion of continuity holds.
Second, we need a property that is similar to, or a consequence of, strong normalisation,
but for denotational semantics. Informally, this property says that the denotation of a
program produces only finitely many distinct values in a parallel fashion. The proofs for
both properties have a similar structure: they proceed by induction on typing derivations of
PλωNK programs and make use of logical relations. The definitions of these logical relations
are interesting in their own right (see Sections 5.3 and 5.4).

Approximation and Decidable Equivalence. The streamlined semantics of Smolka et al.
[2017b] formalises an iterative approximation procedure for PNK programs. The idea is
to expand the iterations (*) up to n times, for some finite n. We define a procedure to
compile a PλωNK program to PNK, while preserving the denotational semantics. Because
our semantics is conservative with respect to the semantics of PNK, we can approximate the
compiled program. Unfortunately, this compilation is only valid for a subclass of PλωNK
programs. Essentially, the trick is to impose additional restrictions in the type system, such
that the parallelism in PλωNK is limited to the parallelism that occurs in PNK.

Moreover, without the dup operation, PNK exhibits decidable program equivalence [Smolka
et al. 2017a]. The dup operation duplicates the packet at the head of a packet history. Thus,
removing this operation restrains all packet histories to the same length, making the state
space of a program essentially discrete and finite. We conjecture that the same restriction
also makes PλωNK’s state space discrete. However, under this restriction, PNK produces only
discrete distributions. Many useful properties are expressible in this sub-language [Smolka
et al. 2019]. However, it cannot express some relevant properties, e.g. latency. Hence, this
setting is less interesting than the full language. For this reason, we focus on full PλωNK.
We revisit these issues in Section 6.

3 SYNTAX AND TYPE SYSTEM

3.1 Syntax of Terms
The syntax of PλωNK (Figure 2) is a straightforward extension of the syntax of PNK with
higher-order functions, thunks and sequencing. We segregate syntax terms into values and
computations.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

PλωNK:Functional Probabilistic NetKAT 1:9

Terms.
x, y ∈ Var Variables
h ∈ Headers Header names
n ∈ N Header values
r ∈ R Weights
V = x | unit | h | n | thunk C Values
P = skip | drop | V = V | ¬P | P ∧ P | P ∨ P Predicates
C = P | V ← V | dup | C ;C | C &C | C ⊕r C | C∗ PNK computations

| produce V | force V | C to x.C | λx :S.C | C V New computations

Types and Contexts.
S = 1 | H | N | T T Value types
T = S → T | P S Computation types
Γ = ∅ | x :S,Γ Contexts

Fig. 2. PλωNK syntax.

Values V are either variables x, unit values, header names h (from a finite set Headers,
e.g. sw , pt , . . .), literals n (natural numbers, the values that can be assigned to a header) or
thunks (suspended computations). Values are never evaluated, but thunks can be forced.

Computations C, on the other hand, can be evaluated, but cannot occur as the argument
to a function. Consequently, only values can appear on the right-hand side of an application.
All original PNK constructs are computations C. Predicates P are a subsort of those.

Atomic predicates are skip, drop or tests V = V . Composite predicates are negation ¬,
conjunction (∧) or disjunction (∨).6 The remaining features inherited from PNK are (non-
predicate) computations in PλωNK. They assign values to headers V ← V , duplicate packets
with dup, compose sequentially (;) or in parallel (&), make a probabilistic choice ⊕r (we
sometimes elide the weight r when it is not relevant) or iterate ∗. We call the computations
that PλωNK inherits from PNK the probabilistic computations.

Finally, PλωNK adds the following computations to PNK: producing a value V (produce V),
forcing a thunk (force V), sequencing computations with C1 to x.C2, defining a function
λx :S.C, or applying functions C to values V with (C V).

We also define terminal computations, i.e., computations that cannot be further evaluated:
R = P | V ← V | dup | R ;R | R&R | R⊕r R | R∗
| produce V | λx :T.C

3.2 Types and Type System
Because PNK terms cannot “go wrong” or get stuck, the language did not come with a type
system. This is no longer true for PλωNK, which introduces stuck terms with the lambda
calculus. For this reason, we enrich PλωNK with a simple type system.

The chief reason for choosing simple types is strong-normalisation (see Theorem 6.8). In
order to not compromise PλωNK’s suitability as a modelling language, certain properties,
6Contrary to previous work [Foster et al. 2016], we do distinguish the syntax for disjunctive and conjunc-
tive predicates from parallel and sequential composition of computations, for improved clarity. Earlier
developments used the same operators for both.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Alexander Vandenbroucke and Tom Schrijvers

Γ `v V :S

x : S ∈ Γ

Γ `v x :S Γ `v unit :1 Γ `v h :H Γ `v n :N
Γ `c C :T

Γ `v thunk C :T T

Γ `c C :T

Γ `c skip :P 1 Γ `c drop :P 1
Γ `v V1 :H Γ `v V2 :N

Γ `c V1 = V2 :P 1
Γ `c P :P 1
Γ `c ¬P :P 1

Γ `c P1 :P 1 Γ `c P2 :P 1
Γ `c P1 ∧ P2 :P 1

Γ `c P1 :P 1 Γ `c P2 :P 1
Γ `c P1 ∨ P2 :P 1

Γ `v V1 :H Γ `v V2 :N
Γ `c V1 ← V2 :P 1 Γ `c dup :P 1

Γ `c C1 :T1 Γ `c C2 :T2

Γ `c C1 ;C2 :T2

Γ `c C1 :T Γ `c C2 :T

Γ `c C1 &C2 :T

Γ `c C1 :T Γ `c C2 :T

Γ `c C1 ⊕ C2 :T

Γ `c C :P 1
Γ `c C∗ :P 1

Γ `v V :S

Γ `c produce V :P S
Γ `v V :T T

Γ `c force V :T

Γ `c C1 :P S x :S,Γ `c C2 :T

Γ `c C1 to x.C2 :T

x : S,Γ `c C :T

Γ `c λx :S.C :S → T

Γ `c C :S → T Γ `v V :S

Γ `c C V :T

Fig. 3. PλωNK’s typing rules.

such as approximation and program equivalence must remain decidable, requiring terminating
reduction for all programs.
For simplicity, we elide other less essential features, such as sum and product types, but

such features could be added without too much trouble.
The bottom part of Figure 2 shows the syntax of types. Types are divided into two kinds:

value types and computation types. There are 4 forms of value types: unit types 1, header
labels H, header literals N and thunks T T . Furthermore, there are 2 forms of computation
types: function types S → T and producer types P S. By construction, the argument position
of a function type can only be a value type. Likewise, only value types can appear inside
producer (P) types. Since only these constructions bind variables, only value types appear
in contexts.
Figure 3 shows the typing rules. We define two mutually recursive typing judgements:

Γ `v V :S for typing value terms, and Γ `c C :T for typing computation terms.
The rules for values are straightforward. Predicates are typed as computations, and always

have type P 1 because they do not produce useful results, only useful side-effects. This also
applies to the rules for modification and duplication (see below).
When sequentially composing computations C1 ;C2, only C2 determines the type of the

whole computation. For parallel composition and choice, the types of both computations must
be the same. Intuitively, the former discards the value produced by the first computation,

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

PλωNK:Functional Probabilistic NetKAT 1:11

while the latter two must somehow combine the two produced values, requiring them to
have the same type.
Iteration C∗ has the same type as C, which is only allowed to be P 1, for the following

reason. Consider that the iteration could be zero or more times, and thus in the zero case
would require inventing a value of an arbitrary type, which we cannot do unless we restrict
iteration to a fixed type with a known value—the unit type. The remaining rules in Figure 3
are derived from CBPV [Levy 2001].

However, unlike CBPV, PλωNK does not exhibit certain type isomorphisms, for instance:

S → S′ → T 6∼= S′ → S → T

This is because in our language computations of function type can have side-effects without
being applied, whereas in CBPV computation of function type are only evaluated upon
application. In particular, applying a computation of type S → S′ → T to a value x produces
a computation of type S′ → T which may have side-effects that depend on x.

In the previous sections, we have also used “top-level” definitions of the form f = · · · . These
are to be understood as syntactic sugar. They desugar into λ-abstraction and application as
follows:

f1 = C1

C2
 (λy :T T.[f1 7→ force y]C2) (thunk C1)

where y is fresh, and `c C1 :T . Recall that only values may be bound to variables. Since the
C1 on the right-hand side of the equality is a computation, we first convert this expressions
to a value by thunking them, and then forcing them where they occur in C2.

4 A CONVENIENT CATEGORY FOR PλωNK
Measure theory is the usual model for continuous7 distributions. However, for our case
classical measure theory has a critical shortcoming: function spaces of measure spaces are
not necessarily measurable themselves, making measure theory unsuitable as the model of a
programming language with λ-abstraction [Aumann et al. 1961]. Put in a different way, the
category of measurable spaces is not Cartesian closed.

Quasi-Borel Spaces [Heunen et al. 2017] are a recent advancement in the state-of-the-art
of the semantics of probabilistic programs, which are Cartesian closed and provide an
alternative formalisation of probabilistic structures. An even more recent development are
the ω-Quasi-Borel Spaces [Vákár et al. 2019], which additionally provide ωCPO structure.
We require this structure to model iterations.

The remainder of this section provides a brief overview of ω-Quasi-Borel Spaces, which
we use as the semantic domain for the denotational semantics of PλωNK that is presented
in the next section. Eager readers may skip ahead to Section 5 on a first reading and come
back when they want more detail.

4.1 ω-Complete Partial Orders
Semantically modelling the behaviour of PλωNK or indeed plain PNK requires a semantic
domain that captures the recursive nature of iterations C∗. For this purpose we use a
partially ordered domain and make sure that the denotation increases with each iteration
7At first glance, it might seem counter-intuitive that PλωNK could admit continuous probability distributions.
However, Foster et al. [Foster et al. 2016] show an example of a PNK program where this is the case: let p be
a program that outputs two distinct packets with equal probability, then p ; (dup ; p)∗ denotes a continuous
distribution.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Alexander Vandenbroucke and Tom Schrijvers

step, i.e., it ascends. The result of the entire iteration is then given by the least upper bound
of the denotations of the iteration steps, and we must choose the ordering in such a way that
these least upper bounds always exist. The ω-Complete Partial Orders (ωCPOs) are the
orders with this property: in an ωCPO the least upper bounds of ascending chains always
exist. Let us now define these concepts more precisely.

Definition 4.1. Let 〈P,v〉 be some poset, an ω-chain is a sequence (xn)n∈N for xn ∈ P ,
such that ∀i, j ∈ N : i ≤ j implies xi v xj . We will sometimes write such a chain as
x0 v x1 v · · · .

Definition 4.2. The poset P is an ω-Complete Partial Order (ωCPO) when every ω-chain
has a least upper bound (lub)

⊔
n≥0 xn ∈ P (sometimes also denoted

∨
n≥0 xn). The least

upper bound is the smallest element of P that is larger than every xn. More formally,

∀n ∈ N : xn v
⊔
n≥0

xn, and ∀z ∈ P : (∀n ∈ N : xn ⊆ z)⇒
⊔
n≥0

xn v z.

Example 4.3. The powerset 2X of any set X is an ωCPO when ordered by subset inclusion
(⊆). The lub of any ω-chain X0 ⊆ X1 ⊆ · · · (with Xi ⊆ X) is precisely the union

⋃
i≥0Xi.

In fact, 〈2X ,⊆〉 is a complete lattice, meaning that any subset of 2X has a lub.

Example 4.4. The functions f : X → P into an ωCPO 〈P,vP 〉 also form an ωCPO, under
the pointwise order �, defined as f � g ⇐⇒ ∀x ∈ X : f(x) vP g(x). In this instance, we
usually denote the lub by

∨
.

Continuous functions between two ωCPOs 〈P,vP 〉 and 〈Q,vQ〉 are monotone functions
f : P → Q such that f preserves least upper bounds, i.e. for all ω-chains (an)n∈N in P ,

f(
⊔
n≥0

xn) =
⊔
n≥0

f(xn).

Note that the first lub is in P , the second in Q. The monotonicity requirement ensures that
this second lub actually exists, by ensuring that (f(xn))n∈N is an ω-chain.

The ωCPOs and continuous functions between them form a Cartesian closed category, i.e:
• the composition of two continuous functions is continuous;
• ωCPOs are closed under Cartesian products, i.e., given two ωCPOs P and Q, P ×Q
is also an ωCPO; and
• continuous functions between two ωCPOs also form an ωCPO. The order is the
pointwise order.

4.2 Quasi-Borel Spaces
In PλωNK we give semantics to higher-order functions and probabilistic choice. For this
reason we need a semantic domain which is both Cartesian closed and admits a probabilistic
power domain. As we mentioned previously, we cannot rely on measure theory, the usual
choice for probabilistic domains, since it is not Cartesian closed. Instead, we use Quasi-Borel
Spaces(QBS) [Heunen et al. 2017], which are Cartesian closed.
However, in order to define QBSes, we must revisit some basic definitions from measure

theory first. We limit the treatment of measure theory to the essentials needed to understand
Quasi-Borel Spaces. For instance, we do not discuss general measure spaces, but constrain
ourselves to a particular set of measurable sets on the reals, the Borel sets:

Definition 4.5. The Borel sets B are the least collection of subsets of R, such that:

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

PλωNK:Functional Probabilistic NetKAT 1:13

• the intervals [a, b] are Borel sets for a, b ∈ R,
• the complement of a Borel set is a Borel set, and
• countable unions of Borel sets are Borel sets.

A probability measure is a function µ : B→ [0, 1] satisfying µ(R) = 1 and µ(
⋃
Sn) =

∑
µ(Un),

for any countable sequence of disjoint Borel sets (Sn)n∈N. A function f : R→ R is called
measurable if its inverse image maps Borel sets to Borel sets. Symbolically, for all B ∈ B:

f−1(B) = {x ∈ R | f(x) ∈ B} ∈ B.

Such functions can be integrated with respect to a measure. For a non-negative real-valued
measurable function f : R→ R, the integral of f with respect to a probability measure µ is
defined as: ∫

f dµ = sup
(Un)

∑
n

(
µ(Un) inf

x∈Un

f(x)

)
where (Un) ranges over finite partitionings of R into Borel sets. If f is allowed to be negative,
its integral is: ∫

f dµ =

∫
f+ dµ−

∫
f− dµ

where f+ = max(f, 0), f− = max(−f, 0).
Measure theory generalises Borel sets to the measurable subsets of a measurable space

X, and generalises measurable functions on R to measurable functions between measurable
spaces, whose inverse image always maps measurable sets to measurable sets.

Quasi-Borel Spaces [Heunen et al. 2017] are an alternative to measure theory, starting
from the from the notion of a random element R→ X instead of measurable sets.

Definition 4.6. A Quasi-Borel Space (QBS) 〈X,MX〉 is a set X together with a set of
functions MX such that the following conditions are met:
• If α : R→ X is constant, then α ∈MX ;
• if α ∈MX , and f : R→ R is measurable, then α ◦ f ∈MX ;
• let R =

⋃
n∈N Un where the Un are pairwise disjoint Borel sets, if αn ∈ MX for all

n ∈ N, then β ∈MX where β(r) = αn(r) if r ∈ Un.

Essentially, MX must contain all constant functions, and must be closed under pre-
composition with a measurable function or countable case-splitting. A function f : X → Y
is a morphism from 〈X,MX〉 to 〈Y,MY 〉 if for all α ∈MX , f ◦ α ∈MY .

There are two canonical ways to turn a set X into a QBS. One option is to simply include
all functions R→ X in MX . Another option is to take as random elements all measurably
piece-wise constant functions, i.e., those functions from R to X that are piece-wise constant
on measurable sets of R.
The quasi-Borel spaces together with their morphisms form a category. Moreover, this

category admits products, co-products and function spaces. That is, unlike the category
formed by measurable spaces and measurable functions between them, this category is
Cartesian closed [Heunen et al. 2017, Proposition 18].

4.3 ω-Quasi-Borel Spaces
Definition 4.7. An ω-Quasi-Borel Space is a triple 〈X,MX ,vX〉 such that:
• 〈X,MX〉 is a quasi-Borel Space,
• 〈X,vX〉 is an ωCPO, and

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Alexander Vandenbroucke and Tom Schrijvers

•
(∨

n≥0 αn

)
∈ MX for all ω-chains α0 � α1 � · · · (with αn ∈ MX), where � is the

point-wise order on MX .

Informally, an ωQBS is a QBS that is also an ωCPO, and whose random elements are
closed under pointwise lubs of ω-chains.
The morphisms between ωQBSes are those morphisms between the underlying ωQBSes,

which are also Scott-continuous between the underlying ωCPOs.
We reiterate two examples from Vákár et al. [2019]:

Example 4.8. Real values have the ωQBS, 〈R,MR,=〉, with MR the set of measurable
functions from R to R. Alternatively, consider W = 〈[0,∞],MW, <〉 the space of weights,
where MW is the set of measurable functions from R to [0,∞].

Just like QBS, ωQBS forms a category that is closed under products, co-products and
exponentials (functions). This category is Cartesian closed. With ωQBSes we finally have a
mathematical concept which unifies iteration, probabilistic choice and higher-order functions.

4.4 A Commutative Probabilistic Powerdomain
The denotational semantics we give to PλωNK is a monadic semantics: it allows the struc-
turing of the semantics in a compositional fashion [Moggi 1991]. This section explains how
to define a monad suitable for expressing probabilistic computations as an ωQBS.
The idea, as explained by Vákár et al. [2019], is to treat distributions as expectation or

integration operators. The distribution monad D(X) is (a submonad8 of) the continuation
monad C(X) = (X →W)→W, where the arrows (→) denote ωQBS morphisms. The idea
is that for a µ ∈ C(X) and f : X →W, µ(f) computes the integral of f with respect to µ,
in more traditional notation, µ(f) =

∫
f dµ.

The unit (return) and composition (>>=) of this monad are given by:

return x = λk → k x m>>= f = λk → m (λx→ f x k)

In more traditional language these represent integrating with δx (Dirac-delta of x) and the
integral

∫
x

∫
k d(f x) dm, respectively. The details of this construction are beyond the scope

of this article. The most important results are:
• This construction satisfies the requirements of synthetic measure theory, implying that
the results of measure theory continue to hold in this new setting. In particular, we
can do addition and scalar multiplication of distributions.
• The monad consists of the s-finite measures and kernels, meaning that the monad is
commutative: operations can be re-ordered [Staton 2017].

5 DENOTATIONAL SEMANTICS
A denotational semantics maps terms (values and computations) into a semantic domain. A
term’s domain is determined by its type, therefore, we must foremost discuss the semantics
of types.

5.1 Semantics of Types
Figure 4 shows the interpretations of the different types. Each type denotes an ωQBS, which
we denote by just the underlying set X instead of the full triple 〈X,MX ,vX〉.

8Specifically, it is the smallest ωQBS that is a full sub-ωCPO of C(X) and contains the randomisable random
elements.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

PλωNK:Functional Probabilistic NetKAT 1:15

J1K = 〈{()},M(), (=)〉
JHK = 〈Headers,MHeaders , (=)〉
JNK = 〈N,MN, (=)〉

JT T K = JT K

JS → T K = 2PH → D(JT KJSK ⇀ 2PH)

JP SK = 2PH → D(JSK ⇀ 2PH)

A ⇀ B = A→ B⊥

Fig. 4. Denotations of types and contexts.

Unit types 1 are denoted by nullary products, whose only inhabitant is written as ().
Header types H are denoted by the finite set of header labels and header literals N are
denoted by the natural numbers. In these three cases, the underlying ωCPO is given by the
discrete order (=)9 and the underlying ωQBS can be created using either of the canonical
methods described in Section 4.2. Thunk types simply denote the denotation of the thunked
computation type.
Computation types need to capture the side effects: state, parallelism, and probabilistic

choice. The denotations of both sorts of computation types are of a similar form:

input state︷︸︸︷
2PH → D(X ⇀

output state︷︸︸︷
2PH︸ ︷︷ ︸

parallel value and state
)

where D is the distribution monad defined in Section 4.4, the arrow (→) denotes ωQBS-
morphism and the harpoon (⇀) denotes partial maps. Partial maps f : A ⇀ B are equivalent
to total functions f̂ : A→ B⊥, where B⊥ is B extended with a distinguished element, ⊥B ,
preceding all other elements. For any a ∈ A, f̂(a) = ⊥B then means that f is undefined on a.
Hence, the domain dom(f) of a partial map f is defined as dom(f) = {x | f̂(x) 6= ⊥}. The
partial maps are not required to be continuous (but they do form an ωCPO and an ωQBS).
Note that we use the power set of packet histories to represent the state. The ωQBS of

this powerset is 〈2PH ,M2PH ,⊆〉 where M2PH are the random elements of the exponential
2PH of 〈2,M2,=〉 and 〈PH ,MPH ,=〉.

We use partial maps X ⇀ 2PH to model parallelism in both the value (X) and the state
(2PH). The idea is that a particular value comes with a particular state. Since the map is
partial, not all values are necessarily present. Note that we cannot use total maps and the
empty set to indicate the absence of a value, since the empty set is a valid state.
For producer types P S, X = JSK. For function types S → T , X = JT KJSK, i.e., the

morphisms (functions) from JSK to JT K.
Finally, the semantics JSK extends naturally to an interpretation on contexts (recall that

contexts only contain value types):

Jx1 : S1, . . . , xk : SkK = JS1K× · · · × JSkK

9In this order, everything is incomparable to everything, unless they are the same element.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Alexander Vandenbroucke and Tom Schrijvers

That is, contexts are denoted by the product of the denotations of the types within the
context. For convenience, however, for an environment ρ ∈ JΓK, we will write ρ(x) to look
up a variable x, and [x 7→ v]ρ to update the value of x in ρ.

5.2 Semantics of Terms
Next, we define denotational semantics for terms (Figure 5). The semantics are divided
into three (mutually recursive) categories: semantics for values, for predicates and for other
computations. All semantic functions take an environment ρ ∈ JΓK as their first argument.
Predicates and computations also take a set of packet histories A ∈ 2PH .

5.2.1 Values. For values, the semantics is relatively straightforward: variables can be looked
up in the environment ρ. The units, headers and literals map to their corresponding constants.
A thunk thunk C partially applies the denotation of C to the current environment ρ. Recall
that JCK ρ is a function that expects a set of packet histories. When the thunk is forced this
function is applied to the current state. To see why this makes sense, consider that it is the
location where the thunk is created that determines the scope of the variables in C, but it is
the location where it is forced which determines its state.

5.2.2 Predicates. Predicates filter sets of packet histories, that is, they allow or reject
particular packet histories.

Predicates skip and drop allow, respectively disallow, all packet histories. A guard V1 = V2
only allows packet histories where the first packet’s header JV1K ρ has the specified value
JV2K ρ (accessing header f of a packet π is written as π.f). Negation (¬) only retains packets
that are dropped by its argument. Finally, conjunction (∧) and disjunction (∨) take the
intersection and union respectively.

5.2.3 Computations. The semantics for computations returns values in the monad D. Since
D is a monad, we use the well-understood do-notation to construct monadic expressions,
de-sugaring straightforwardly to monadic bind (>>=).
The first three cases are non-probabilistic. Moreover, they all produce the unit value (),

they return a map from () to a modified set of histories.10 Predicates P filter packet histories
according to the predicate semantics JP Kp ρ A. Modifications change the first packet’s header
for every packet history in the input set (setting a packet π’s header f to x is written
π[f 7→ x]). Similarly, dup duplicates the first packet.
Sequential composition (C1 ;C2) first evaluates C1, and then C2 (returning the value of

C2). Since the evaluation of C2 does not depend on the value of C1, all packet histories of
C1 are simply aggregated and passed to C2.

Parallel composition C1 &C2 combines the results (values and states) of both computations.
Since the results of C1 and C2 are captured by the partial maps µ1 and µ2, it must combine
these maps. The pointwise lub µ1

∨
µ2 is exactly what is needed: the domain of the lub is

the union of the domains of µ1 and µ2, so it has all the values of both computations, and
the sets of packet histories it maps a value x onto is the union of µ1(x) and µ2(x).
Choice C1 ⊕p C2, reweighs both C1 and C2, by p and 1 − p respectively, and adds the

resulting distributions. Note that the sum is a probability distribution, i.e. all weights sum
to one. Since D satisfies the requirements of synthetic measure theory, scalar multiplication
and addition behave as one would intuitively expect, multiplying and adding probabilities.

10By convention, λ with an arrow (→) is abstraction in the meta-language (morphisms in ωQBS) and λ

with dot . refers to abstraction in the object language.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

PλωNK:Functional Probabilistic NetKAT 1:17

Values
JV K : JΓK → JSK
for Γ `v V :S

JxK ρ = ρ(x)

JunitK ρ = ()

JhiK ρ = hi

JiK ρ = i

Jthunk CK ρ = JCK ρ

Predicates JP Kp : JΓK→ 2PH → 2PH for Γ `c P :P 1

JskipKp ρ A = A

JdropKp ρ A = ∅
JV1 = V2Kp ρ A = {π ::h ∈ A | π.(JV1K ρ) = JV2K ρ}

J¬P Kp ρ A = A− JP Kp ρ A
JP1 ∧ P2Kp ρ A = JP1Kp ρ A ∩ JP2Kp ρ A
JP1 ∨ P2Kp ρ A = JP1Kp ρ A ∪ JP2Kp ρ A

Computations JCK : JΓK→ JT K for Γ `c C :T

JP K ρ A = return (λ()→ JP Kp ρ A)

JV1 ← V2K ρ A = let f = JV1K ρ, j = JV2K ρ
in return (λ()→ {π[f 7→ j] ::h | π ::h ∈ A})

JdupK ρ A = return (λ()→ {π ::π ::h | π ::h ∈ A})
JC1 ;C2K ρ A = do µ← JC1K ρ A

JC2K ρ
(⋃

x∈dom(µ) µ(x)
)

JC1 &C2K ρ A = do µ1 ← JC1K ρ A
µ2 ← JC2K ρ A
return (µ1

∨
µ2)

JC1 ⊕r C2K ρ A = r(JC1K ρ A) + (1− r)(JC2K ρ A)

JC∗K ρ A =
⊔

n≥0 (JC
nK ρ A) where

C0 = skip,
Cn+1 = skip&(C ;Ci), n ≥ 0

Jproduce V K ρ A = return (λ(JV K ρ)→ A)

Jforce V K ρ A = JV K ρ A
Jλx :S.CK ρ A = return (λ(λv → JCK ([x 7→ v]ρ))→ A)

JC V K ρ A = do µ← JCK ρ A
Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}

JC1 to x.C2K ρ A = do µ← JC1K ρ A
Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}

where Ξ{m1, . . . ,mk} = do µ1 ← m1

...
µk ← mk

return (µ1

∨
· · ·

∨
µk)

Note: X → Y means ωQBS-morphisms from X to Y .

Fig. 5. Denotations of terms.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Alexander Vandenbroucke and Tom Schrijvers

Iteration (Kleene-star C∗) is defined as it is for PNK, using least fixed-point semantics. It
can be understood as the least fixed-point of the function

(
>>=λµ→ Jskip&CK ρ µ(())

)
.

Or, operationally, we simply take the least upper bound of iterating C for 0, 1, . . . times.
This definition is identical to Smolka et al.’s [2017b], although on a different ωCPO. Treating
probabilistic loops as fixed-points goes at least as far back as Kozen’s [1981] early work on
probabilistic program semantics.
To produce (produce V) a value V , we return the map from JV K ρ to the current set of

packet histories A. Here we use the notation λ(JV K ρ)→ A to define the map that is A on
JV K ρ and ⊥ everywhere else.
Thunks are forced by evaluating their semantics, and then applying the result of that

semantics to the input set of packet histories. Recall that the semantics of a thunk corresponds
to a partially applied semantics of the thunked computation.
For an abstraction λx : S.C we construct a map with a domain containing only one

particular anonymous function in the meta-language. This function takes a v ∈ JSK, extends
the environment ρ with v, and runs JCK in this new environment.
For application, we must first sample from the computation C. This produces a map

from JSK → JT K to sets of packet histories. Each unique function f in the map µ is then
applied to the argument JV K ρ and the corresponding set of packet histories µ(f). Every
unique function f corresponds to one or more parallel branches that produce this value,
µ(f) aggregates the states of each of those branches. This produces a set of distributions,
which we can collapse using the Ξ operator (also defined in Figure 5). This operator samples
from each distribution, and takes the lub of the resulting maps.

Sequencing (C1 to x.C2) is similar to application. We sample a map µ from C1. As with
application, there is only a finite number of distinct values v in dom(µ). For each unique v,
we extend ρ, and evaluate JC2K [x 7→ v]ρ µ(v), producing a finite set of distributions, which
we flatten with Ξ.

The use of Ξ is well-defined by the following lemma:

Lemma 5.1 (Lubs of finite sets). Let {m1, . . . ,mn} ⊆ JT K for some type T , then
Ξ{m1, . . . ,mn} is the least upper bound of {m1, . . . ,mn}.

The proof is a straightforward induction on the size of the set. Because Ξ computes the
least upper bound, it is independent of the order of {m1, . . . ,mn}. However, it assumes
that the input set is finite, i.e., that there are only finitely many unique functions f . This
assumption is discharged by Theorem 5.2 (see Section 5.3).
A further theorem (Theorem 5.5) makes the semantics well-defined. In particular, it

ensures that the least upper bound in the definition of iteration exists and that the types
ascribed to the denotations in Figure 5 are valid. The next sections discuss each theorem in
turn. The proofs of these theorems can be found in Appendix ??.

5.3 Finite Maps
The function Ξ is only defined for finite sets. Therefore, we must verify that this function is
only ever applied to a finite set. Informally, this is the case if we ensure that in Figure 5, µ
is only bound to maps that have a finite domain. More formally, we desire the following:

Theorem 5.2 (Finite Maps). For all computations C, such that Γ `c C :T , ρ ∈ JΓK and
A ∈ 2PH , we have that for any ωQBS morphism f : X → R, where JT K = 2PH → D(X):∫

X

f d(JCK ρ A) =
∫
X

χF f d(JCK ρ A)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

PλωNK:Functional Probabilistic NetKAT 1:19

where F = {g ∈ X | dom(g) is finite}, and χF : X → {0, 1} is its characteristic function.

To prove this theorem we rely on logical relations [Tait 1967] FS to define a stronger
theorem (Theorem 5.4). The actual logical relations are FS and FT , defined as follows:

Definition 5.3. The predicates FS and FT where S and T are value, respectively compu-
tations types, are defined inductively as:

FS =

{
JSK if S 6= T T
FT if S = T T

FT =

{
f ∈ JT K

∣∣∣∣ ∀g ∈ G(T),∀A ∈ 2PH :

∫
g d(f(A)) =

∫
χF (T) g d(f(A))

}
where

F (P S) = {µ : FS ⇀ 2PH | dom(µ) is finite}
F (S → T) = {µ : (FS → FT)⇀ 2PH | dom(µ) is finite}

G(P S) = (JSK ⇀ 2PH)→ R

G(S → T) = ((JSK→ JT K)⇀ 2PH)→ R

The idea of these logical relations is to restrict the denotations to those semantic objects
where all partial maps have a finite domain. For instance, the denotation of non-thunk
values never contains a map, hence FS is simply JSK in this case. Thunked computations
can contain computations, thus we restrict them to FT .
In a somewhat roundabout fashion, FT says that the denotations of a computation of

type T must only contain finite maps. In particular, it says that integrating any g with
respect to f(A) should be the same as integrating χF (T) g with respect to f(A), where F (T)
only contains the finite maps of the appropriate type.11 In other words, integrating while
filtering out the infinite maps should not make a difference at all, meaning that the only
maps that are present are finite. The following theorem, of which Theorem 5.2 is a corollary,
states that every well-typed term’s denotation is a member of the appropriate relation:

Theorem 5.4. For all values V and computations C,

if Γ `v V :S and Γ `c C :T , then JV K ρ ∈ FS and JCK ρ ∈ FT

where ρ ∈ JΓK such that if x : Sx ∈ Γ, then ρ(x) ∈ FSx
.

Proof. (sketch) By induction on the structure of the typing derivation, performing case
analysis on the final rule application. The proof uses an equational reasoning style. �

5.4 Continuity
Continuity is a property that intuitively means that a function preserves the least upper
bounds of the domain it operates on. In other words, it preserves the ωCPO structure. This
is a technical requirement to ensure that the least-upper bound of the semantics of iteration
exists. More formally, we desire the following property:

11The juxtaposition χF (T) g means pointwise multiplication.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Alexander Vandenbroucke and Tom Schrijvers

Theorem 5.5 (Continuity). For all computations C, such that Γ `c C : T , for all
ρ ∈ JΓK, JCK ρ A is continuous in A ∈ 2PH , i.e. JCK ρ A is monotone, and for all
A1 ⊆ A2 ⊆ . . . ⊆ PH : ⊔

i≥1

(JCK ρ Ai) = JCK ρ
(⋃
i≥1

Ai

)
To prove this theorem, we define the following logical relation:

Definition 5.6. The predicates CS and CT where S and T are value, respectively computa-
tions types, are defined inductively as:

CS =

{
JSK if S 6= T T
CT if S = T T

CT =

{
f ∈ JT K

∣∣∣∣ f is continuous, and
∀g ∈ G(T),∀A ∈ 2PH :

∫
g d(f(A)) =

∫
χC(T) g d(f(A))

}
where

C(P S) = {µ : CS ⇀ 2PH }
C(S → T) = {µ : (CS → CT)⇀ 2PH }

G(P S) = (JSK ⇀ 2PH)→ R

G(S → T) = ((JSK→ JT K)⇀ 2PH)→ R

Similar to Section 5.3 the idea is to restrict the denotations to those semantics objects
that are continuous (in the input set—not the environment), and for those partial maps
that have a function domain, the domain only contains continuous functions. Note that we
do not require that the partial maps themselves are continuous. Indeed, this is clearly not
the case (e.g. in the case of produce V and λx :S.C). The denotations for non-thunk values
do not contain input sets or maps, hence CS is simply JSK. Thunked computations contain
computations, thus CT T = CT . For computations of type T , CT says that the semantics itself
must be continuous, and any element of a partial map’s domain must be continuous.

We prove the following theorem, of which Theorem 5.5 is a direct consequence:

Theorem 5.7. For all values V and computations C:

if Γ `v V :S and Γ `c C :T , then JV K ρ ∈ CS and JCK ρ ∈ CT

where ρ ∈ JΓK such that if x : Sx ∈ Γ, then ρ(x) ∈ CSx
.

5.5 Conservativity
The next theorem relates the semantics to the original PNK semantics, showing that our
semantics behaves identical to the original PNK semantics on probabilistic computations.

Theorem 5.8 (Conservativity). Let C be a closed probabilistic computation, and let
JCKPNK be the denotation of C in the probabilistic PNK semantics [Smolka et al. 2017b],
re-translated into ωQBS (see Appendix ??), then for all A ∈ 2PH :

JCKPNK A = JCK () A>>=λµ→ return (µ(()))

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

PλωNK:Functional Probabilistic NetKAT 1:21

Summary. We have a well-defined denotational semantics for PλωNK. This semantics
is a conservative extension of PNK’s semantics. However, it is not clear how to compute
this semantics. Recall that application C V applies every unique f ∈ dom(µ) exactly once,
in parallel. Because parallel composition is not idempotent [Foster et al. 2016], duplicate
applications are not innocent. The situation for sequencing is analogous. To the best of our
knowledge, there is no decidable procedure for this uniqueness problem. We could follow
Smolka et al. [2017a, 2019] and remove dup, making the state-space finite and discrete.
Although a perfectly valid solution, we believe that this restricts the properties we can model
in our language too much (e.g., modelling latency is not possible). Instead, we restrict the
type of parallel composition to P 1, to ensure that dom(µ) contains a single element. This
enables the compilation of closed PλωNK terms into PNK. The program is then approximated
with PNK’s approximation procedure. We discuss this approach in detail in Section 6.

6 COMPILATION TO PNK
Let us make precise the restriction referred to in the previous section. We replace the
judgements Γ `v V :S and Γ `c C :T with Γ
v V :S and Γ
c C :T . The rules for these
judgements are analogous to the original rules, except that we replace

Γ `c C1 :T Γ `c C2 :T

Γ `c C1 &C2 :T
with

Γ
c C1 :P 1 Γ
c C2 :P 1
Γ
c C1 &C2 :P 1

The new rule restricts the type of parallel composition to P 1. In other words, the value of
& is completely predictable: it must be unit . Furthermore, parallelism is the only way to
grow the domain of the finite maps. Thus, all domains are now either a single function, or a
single value. From a different perspective, we have just restricted the parallelism of PλωNK
to the parallelism present in PNK.

6.1 Elaboration
We only compile closed computations of type P 1. This is reasonable because complete PλωNK
models are not functions and have no free variables. Initially, we only deal with terminal
computations (Section 3.1). By case analysis on the typing judgement, such computations
are either produce unit or probabilistic computations (i.e. only consist of PNK terms). The
following relation elaborates these computations into PNK:

Definition 6.1 (Elaboration). Define R R as:
P P

V ← V V ← V
dup dup

R1 ;R2 E1 ;E2 if R1 E1 and R2 E2

R1 &R2 E1 &E2 if R1 E1 and R2 E2

R1 ⊕R2 E1 ⊕ E2 if R1 E1 and R2 E2

R∗ E∗ if R E
produce V skip
λx :S.C skip

Elaboration preserves the semantics of a closed term of type P 1:

Theorem 6.2 (Soundness of Elaboration). Let R1, R2 be terminals such that

c R1 :P 1,
c R2 :P 1 and R1 R2, then JR1K = JR2K .

Moreover, the elaboration always exists for closed terms of the right type:

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Alexander Vandenbroucke and Tom Schrijvers

C ⇓ R

P ⇓ P F ← N ⇓ F ← N dup ⇓ dup produce V ⇓ produce V

λx :S.C ⇓ λx :S.C
C1 ⇓ R1 C2 ⇓ R2

C1 ;C2 ⇓ R1 ;R2

C1 ⇓ R1 C2 ⇓ R2

C1 &C2 ⇓ R1 &R2

C1 ⇓ R1 C2 ⇓ R2

C1 ⊕ C2 ⇓ R1 ⊕R2

C ⇓ R
C∗ ⇓ R∗

C ⇓ R
force (thunk C) ⇓ R

C1 ⇓ λx :S.C11 [x 7→ V]C11 ⇓ R
C1V ⇓ R

C1 ⇓ R11 ;R12 R12 V ⇓ R2

C1 V ⇓ R11 ;R2

C1 ⇓ produce V [x 7→ V]C2 ⇓ R
C1 to x.C2 ⇓ R

C1 ⇓ R11 ⊕R12 R11 V ⇓ R1 R12 V ⇓ R2

C1 V ⇓ R1 ⊕R2

C1 ⇓ P [x 7→ unit]C2 ⇓ R
C1 to x.C2 ⇓ P ;R

C1 ⇓ F ← N [x 7→ unit]C2 ⇓ R
C1 to x.C2 ⇓ F ← N ;R

C1 ⇓ dup [x 7→ unit]C2 ⇓ R
C1 to x.C2 ⇓ dup ;R

C1 ⇓ R11
∗ [x 7→ unit]C2 ⇓ R2

C1 to x.C2 ⇓ R11
∗ ;R2

C1 ⇓ R11 ;R12 R12 to x.C2 ⇓ R2

C1 to x.C2 ⇓ R11 ;R2

C1 ⇓ R11 &R12 [x 7→ unit]C2 ⇓ R2

C1 to x.C2 ⇓ (R21 &R22) ;R2

C1 ⇓ R11 ⊕R12 R11 to x.C2 ⇓ R21 R12 to x.C2 ⇓ R22

C1 to x.C2 ⇓ R21 ⊕R22

Fig. 6. Rules for reduction from PλωNK to PNK.

XTheorem 6.3 (Completeness of Elaboration). Let R be a terminal, then there
exists precisely one probabilistic E such that R E.

6.2 Reduction
Converting a closed terminal into a PNK program is only half the battle. The other half is
performed by the bigstep relation C ⇓ R given in Figure 6. It reduces a computation to a
terminal. We can make the following observations about the bigstep relation:
• Atomic computations simply reduce to themselves.
• Compound computations built with PNK operations (sequential and parallel com-
position, probabilistic choice and iteration) are reduced to the reduction of their
subcomputations.
• Forcing a thunk reduces to the reduct of the thunked computation.
• Application of a lambda substitues the value into the body of the lambda. When the
first argument reduces to sequential composition or probabilistic choice, the application

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

PλωNK:Functional Probabilistic NetKAT 1:23

distributes over this argument. This is not possible for parallel composition, since it is
not distributive [Foster et al. 2016].
• When C1 reduces to produce V , sequencing (C1 to x.C2) substitutes V for x in C2,
reducing the result of the substitution. When the first argument instead reduces to
a predicate, a modification, a duplication, parallel composition or an iteration, C1

always reduces to a terminal of type P 1. Hence, we substitute unit for V in these cases.
When the first argument reduces to sequential composition composition or probabilistic
choice, sequencing, like application also distributes over this argument. Finally, if the
first argument reduces to parallel composition, we know that the value it produces
must be unit, and so we can always substitute unit for x.

To be clear, our compilation strategy is as follows: (1) Reduce a PλωNK computation to a
terminal, and (2) elaborate the remaining terminal into PNK.
To ensure that our compilation delivers correct results, it remains to show that step (1)

terminates, and that this step is sound. Soundness means that the denotational semantics of
the program is preserved. It is expressed by the following theorem:

Theorem 6.4 (Soundness of Reduction). Let C,R be computations, if Γ
c C :T
and C ⇓ R then JCK = JRK.

Termination is our subsequent concern. It follows from strong normalisation of the
reduction relation, a property of the meta-theory of reduction, discussed in the next section.

6.3 Meta-theory of Reduction
The reduction relation obeys the standard type-preservation theorems, and in addition, is
strongly normalising. In detail, terminals are reduced to themselves (Theorem 6.5). Moreover,
all reductions result in terminals (by definition), in a deterministic fashion (Theorem 6.6)
and preserve types (Theorem 6.7). Finally, reduction is strongly normalising (Theorem 6.8).

XTheorem 6.5 (Reflection). Let R be a terminal, then R ⇓ R.

XTheorem 6.6 (Determinacy). Let C,R1, R2 be computations, if C ⇓ R1 and C ⇓ R2,
then R1 = R2.

XTheorem 6.7 (Preservation). Let C,R be computations, if Γ
c C :T and C ⇓ R,
then Γ `c R :T . Conversely, if Γ
c C :T1, Γ
c R :T2 and C ⇓ R, then T1 = T2.

XTheorem 6.8 (Strong Normalisation). Let C be a computation such that
c C :T
for some computation type T, then there exists a terminal R such that C ⇓ R.

In addition to the theorems shown here, PλωNK also satisfies additional inversion and
substitution lemmas that are instrumental in proving these theorems.

The meta-theory discussed in this section has been mechanised with the aid of the Abella
proof-assistant [Gacek 2008]. The proofs for these theorems proceed by induction either
on the structure of terminals or the structure of the bigstep relation. Each of proof has
many cases that need to be checked. By using a theorem prover, we ensure that no cases or
conditions are forgotten.
The most involved proof is Strong Normalisation, which requires a logical-relation style

proof technique [Tait 1967]. This particular proof was inspired by the standard proof of
strong normalisation of CBPV, described in Levy’s thesis [2001].

The definition of the logical relations are shown in Figure 7. In essence, we need to define
three mutually-recursive type-indexed logical relations: one for values (V[S]), one for closed

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Alexander Vandenbroucke and Tom Schrijvers

V[1] = {unit} V[H] = Headers V[N] = N V[T T] = {thunk C | C ∈ C[T]}

R ∈ T[P 1] iff
c R :P 1 where R is atomic
R∗ ∈ T[P 1] iff R ∈ T[P 1] and
c R

∗ :P 1
produce V ∈ T[P S] iff V ∈ V[S] and
c produce V :P S

R1 ;R2 ∈ T[P S] iff ∃T ′ : R1 ∈ T[T ′] and R2 ∈ T[P S] and
c R1 ;R2 :P S
R1 &R2 ∈ T[P S] iff R1, R2 ∈ T[P S] and
c R1 &R2 :P S
R1 ⊕R2 ∈ T[P S] iff R1, R2 ∈ T[P S] and
c R1 ⊕R2 :P S

R ∈ T[S → T] iff R is terminal and
c R :S → T and ∀V ∈ V[S] : (R V) ∈ C[T]

C ∈ C[T] iff
c C :T and ∃R ∈ T[T] : C ⇓ R

Fig. 7. Logical relations involved in proving Strong Normalisation

terminal computations (T[T]) and one for all computations, terminal or non-terminal (C[T]).
The idea is that those relations contain only closed computations for which the bigstep
relation ⇓ terminates. For values, it contains all closed non-thunk values, and only closed
thunks of terminating computations. Additionally, computations of function type must
preserve termination when applied to terminating values.

Compared to Levy’s logical relations, our logical relation does not contain product or sum
types. In our proof we leverage standard Abella techniques to prove theorems with logical
relations, which requires defining and proving substitution lemmas for every syntactic form.
Moreover, we also need to show additional preservation lemmas for sequential and parallel
composition, and for probabilistic choice.
The proof of strong normalisation, together with the definitions of the logical relations

and supporting lemmas amounts to a little under 800 lines of Abella code (roughly 1500
LOC in total).

6.4 Discussion
We have identified a class of PλωNK programs that can be safely compiled to PNK. In
particular, the class consists of computations C such that
c C :P 1, i.e., those programs
that do not use parallelism beyond what is present in PNK. It should be possible to ease
this restriction slightly. For instance, unlike functions, we can distinguish between distinct
headers and literals. This leads to only finitely many cases, which could be encoded explicitly
into PNK.

Once a program has been compiled, it can be approximated in PNK. The approximation
proceeds by expanding iterations in the program up to n times, for finite n. More iterations
improve the accuracy of the results [Smolka et al. 2017b].

7 RELATED WORK
Software Defined Networks. Software Defined Networks (SDN) [Foster et al. 2013] aim

to decrease the complexity of the modern computer networking environment, by offering a
clean open interface between heterogeneous networking devices (e.g. routers, switches and

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

PλωNK:Functional Probabilistic NetKAT 1:25

firewalls). This is accomplished through the OpenFlow12 protocol. Unfortunately, this is a
rather low-level protocol making it inconvenient to program hardware in OpenFlow directly.

The aim of the Frenetic project [Reich et al. 2013] is to design the right high-level abstrac-
tions for controlling OpenFlow hardware. NetKAT [Anderson et al. 2014] and PNK [Foster
et al. 2016] were developed under this project. Some preliminary case studies were performed
with PNK, modelling the behaviour of several traffic engineering approaches. The effort
involved in these case studies was not reported. Interestingly, the few samples of code that
were provided seem to use features (e.g. finite iterations, variables), that are not part of the
formalised fragment of PNK, but could be implemented fully within PλωNK.

Probabilistic Programming. The goal of probabilistic programming [Goodman 2013] can
be captured by the following equation:

PPL = MODELLING LANGUAGE + INFERENCE ALGORITHM

That is, probabilistic programming’s goal is to unify probabilistic modelling and general
purpose programming: probabilistic models are written in the language, and the probabilities
are inferred using a generic inference algorithm.
Stan [Carpenter et al. 2017] is a very popular statistical modelling language, with bind-

ings to R, Python, MATLAB, Julia and several others. More recently, languages such as
Gen [Cusumano-Towner et al. 2019] and Turing [Ge et al. 2018] have started to make the
inference algorithms programmable, in addition to the model, since fine-tuning the inference
can lead to large performance gains.
Probabilistic Programming has been applied to such diverse problems as 3D body pose

estimation from depth data [Cusumano-Towner et al. 2019], genetics [De Maeyer et al. 2013]
and Automatic Video Montage [Aerts et al. 2016].
Functional PPLs such as Anglican [Wood et al. 2014], Venture [Lu 2016], or Gen [Lu

2016], allow distributions over higher-order functions. However, unlike this work, they do
not formalise the semantics of higher-order functions, focusing instead on language design
and implementation, and inference. The work on quasi-Borel Spaces is at least partially
motivated by the unfilled need for a theoretical foundation for these languages [Heunen et al.
2017]. Quasi-Borel Spaces have been used by Scibior et al. [2018] to verify the correctness of
modular Bayesian inference algorithms.

Probabilistic powerdomains have been extensively investigated (see e.g., Bacci et al. [2018];
Battenfeld et al. [2007]; Goubault-Larrecq and Varacca [2011]; Jones and Plotkin [1989];
Jung and Tix [1998]; Saheb-Djahromi [1980]). Nevertheless, until the work of Vákár et al.
[2019], a convenient continuous probabilistic powerdomain that supports iteration and is
commutative proved elusive. However, the ω-quasi Borel Spaces are not the only approach
to this problem, as we remark in the the next paragraph.

Probabilistic Call-By-Push-Value. Although PλωNK does not model CBPV exactly, it was
heavily inspired by it. CBPV was developed by Levy [2001] as a paradigm that subsumes
both CBV and CBN. Since then, Ehrhard and Tasson [2019] have developed a probabilistic
CBPV calculus. A technical difference is that they give a semantics in terms of probabilistic
coherence spaces [Danos and Ehrhard 2011], whereas we use a monadic semantics based on
ωQBSes.

Goubault-Larrecq [2019] cleverly side-steps the issue of providing a commutative statistical
higher-order powerdomain, by giving a semantics for CBPV that interprets value types and

12https://www.opennetworking.org/

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

https://www.opennetworking.org/

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Alexander Vandenbroucke and Tom Schrijvers

computation types differently. The values are interpreted in a category which is closed under
the powerdomain functor, and the computations are interpreted as DCPOs. His language
also has demonic non-determinism, statistical termination testers and parallel if statements.

A crucial difference with our work is that monadic state is not present in either calculus,
while it is in ours. This significantly complicates our denotational semantics, in particular for
application and sequencing. Moreover, these calculi do observe the isomorphism mentioned
in Section 5.1. A detailed investigation into the relationships between these calculi and our
language is reserved for future work.

8 CONCLUSIONS AND FUTURE WORK
In future work, we intend to quantitatively evaluate the impact PλωNK, by re-implementing
the existing PNK case-studies, and study the improvements in terms of readability and
maintainability.

To support this quantitative study, we need to further develop and optimise our prototype.
We believe that performance can be improved by incorporating techniques such as knowledge
compilation [Kisa et al. 2014; Smolka et al. 2015] and defunctionalisation [Danvy and Nielsen
2001; Reynolds 1998].

Furthermore, our work contains a significant amount of paper proofs. These proofs are
inductive proofs, using equational reasoning and logical relations, which should not be too
difficult to mechanise. However, the requisite background theory, i.e., (ω-)Quasi-Borel Spaces,
has to be mechanised first.
Lastly, we are investigating reformulations of PλωNK for other paradigms such as true

CBPV and Fine-Grained CBV [Levy 2001, App. A.3]. The key difference appears to be that
function typed terms should only evaluate their side-effects when applied to a value.

Conclusion. In this article we presented PλωNK, a functional network modelling language
that combines state, parallelism and probabilistic choice. Because it combines higher-order
functions and probability, we cannot give it a purely measure-theoretic semantics. Instead, we
leverage ω-Quasi Borel Spaces to define our denotational semantics. We also define a strongly
normalising type system for PλωNK. Since the main purpose of PλωNK is verification, the
additional flexibility of general recursion is not required. Indeed, strong normalisation is
necessary to make our semantics well-defined. Moreover, we develop a procedure to compile
programs in our language to the simpler language Probabilistic NetKAT, given small type
restrictions.

ACKNOWLEDGMENTS
We would like to thank Ohad Kammar and Mathijs Vákár for personally explaining ωQBSes
and providing us with an early draft of their paper [Vákár et al. 2019].
We are grateful to the anonymous POPL reviewers for their constructive feedback and

helpful in-depth comments.
Alexander Vandenbroucke is an SB Fellow of the flemish Fund for Scientific Research(FWO),

File No.: 1S68117N. This work is further supported by FWO Grant No. G095917N.

REFERENCES
Bram Aerts, Toon Goedemé, and Joost Vennekens. 2016. A Probabilistic Logic Programming Approach

to Automatic Video Montage. In Proceedings of the Twenty-second European Conference on Artificial
Intelligence (ECAI’16). IOS Press, Amsterdam, The Netherlands, The Netherlands, 234–242. https:
//doi.org/10.3233/978-1-61499-672-9-234

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

https://doi.org/10.3233/978-1-61499-672-9-234
https://doi.org/10.3233/978-1-61499-672-9-234

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

PλωNK:Functional Probabilistic NetKAT 1:27

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger,
and David Walker. 2014. NetkAT: semantic foundations for networks. In POPL. ACM, 113–126.

Robert J Aumann et al. 1961. Borel structures for function spaces. Illinois Journal of Mathematics 5, 4
(1961), 614–630.

Giorgio Bacci, Robert Furber, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Dana Scott. 2018.
Boolean-Valued Semantics for the Stochastic λ-Calculus. In LICS. ACM, 669–678.

Ingo Battenfeld, Matthias Schröder, and Alex Simpson. 2007. A Convenient Category of Domains. Electr.
Notes Theor. Comput. Sci. 172 (2007), 69–99.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt,
Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A probabilistic programming
language. Journal of statistical software 76, 1 (2017).

Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka. 2019. Gen:
a general-purpose probabilistic programming system with programmable inference. In PLDI. ACM,
221–236.

Vincent Danos and Thomas Ehrhard. 2011. Probabilistic coherence spaces as a model of higher-order
probabilistic computation. Inf. Comput. 209, 6 (2011), 966–991.

Olivier Danvy and Lasse R. Nielsen. 2001. Defunctionalization at Work. In PPDP. ACM, 162–174.
Dries De Maeyer, Joris Renkens, Lore Cloots, Luc De Raedt, and Kathleen Marchal. 2013. PheNetic:

network-based interpretation of unstructured gene lists in E. coli. Molecular BioSystems 9, 7 (2013),
1594–1603.

Thomas Ehrhard and Christine Tasson. 2019. Probabilistic call by push value. Logical Methods in Computer
Science 15, 1 (2019).

Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Sht. Shterionov, Bernd Gutmann, Ingo Thon,
Gerda Janssens, and Luc De Raedt. 2015. Inference and learning in probabilistic logic programs using
weighted Boolean formulas. TPLP 15, 3 (2015), 358–401.

Nate Foster, Arjun Guha, Mark Reitblatt, Alec Story, Michael J Freedman, Naga Praveen Katta, Christopher
Monsanto, Joshua Reich, Jennifer Rexford, Cole Schlesinger, et al. 2013. Languages for software-defined
networks. IEEE Communications Magazine 51, 2 (2013), 128–134.

Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexandra Silva. 2016. Probabilistic
NetKAT. In Programming Languages and Systems - 25th European Symposium on Programming, ESOP
2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings (Lecture Notes in Computer Science), Peter
Thiemann (Ed.), Vol. 9632. Springer, 282–309. https://doi.org/10.1007/978-3-662-49498-1_12

Andrew Gacek. 2008. The Abella Interactive Theorem Prover (System Description). In IJCAR (Lecture
Notes in Computer Science), Vol. 5195. Springer, 154–161.

Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: A language for flexible probabilistic inference. In
International Conference on Artificial Intelligence and Statistics. 1682–1690.

Noah D. Goodman. 2013. The principles and practice of probabilistic programming. In POPL. ACM,
399–402.

Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum.
2012. Church: a language for generative models. CoRR abs/1206.3255 (2012).

Jean Goubault-Larrecq. 2019. A Probabilistic and Non-Deterministic Call-by-Push-Value Language. In
Thirty-Fourth Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver,
Canada, June 24–27, 2019, Proceedings. To appear. https://arxiv.org/pdf/1812.11573.pdf

Jean Goubault-Larrecq and Daniele Varacca. 2011. Continuous Random Variables. In LICS. IEEE Computer
Society, 97–106.

Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient category for higher-order
probability theory. In LICS. IEEE Computer Society, 1–12.

Claire Jones and Gordon D Plotkin. 1989. A probabilistic powerdomain of evaluations. In [1989] Proceedings.
Fourth Annual Symposium on Logic in Computer Science. IEEE, 186–195.

Achim Jung and Regina Tix. 1998. The troublesome probabilistic powerdomain. Electr. Notes Theor.
Comput. Sci. 13 (1998), 70–91.

Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. 2014. Probabilistic Sentential Decision
Diagrams. In KR. AAAI Press.

Dexter Kozen. 1981. Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22, 3 (1981), 328–350.
Paul Blain Levy. 2001. Call-by-push-value. Ph.D. Dissertation. Queen Mary University of London, UK.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

https://doi.org/10.1007/978-3-662-49498-1_12
https://arxiv.org/pdf/1812.11573.pdf

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Alexander Vandenbroucke and Tom Schrijvers

Anthony Lu. 2016. Venture: An extensible platform for probabilistic meta-programming. Master’s thesis.
Massachusetts Institute of Technology.

Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Comput. 93, 1 (1991), 55–92.
Benjamin C. Pierce. 2002. Types and programming languages. MIT Press.
Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and David Walker. 2013. Modular SDN

programming with Pyretic. Technical Report of USENIX (2013).
John C. Reynolds. 1998. Definitional Interpreters for Higher-Order Programming Languages. Higher-Order

and Symbolic Computation 11, 4 (1998), 363–397.
Nasser Saheb-Djahromi. 1980. CPO’s of measures for nondeterminism. Theoretical Computer Science 12, 1

(1980), 19–37.
Adam Scibior, Ohad Kammar, and Zoubin Ghahramani. 2018. Functional programming for modular Bayesian

inference. PACMPL 2, ICFP (2018), 83:1–83:29.
Steffen Smolka, Spiridon Aristides Eliopoulos, Nate Foster, and Arjun Guha. 2015. A fast compiler for

NetKAT. In ICFP. ACM, 328–341.
Steffen Smolka, David M. Kahn, Praveen Kumar, Nate Foster, Dexter Kozen, and Alexandra Silva. 2017a.

Deciding Probabilistic Program Equivalence in NetKAT. CoRR abs/1707.02772 (2017). arXiv:1707.02772
http://arxiv.org/abs/1707.02772

Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, and Alexandra Silva. 2017b. Cantor meets
Scott: semantic foundations for probabilistic networks. In POPL. ACM, 557–571.

Steffen Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin Hsu, Dexter Kozen, and Alexandra
Silva. 2019. Scalable verification of probabilistic networks. In PLDI. ACM, 190–203.

Sam Staton. 2017. Commutative Semantics for Probabilistic Programming. In ESOP (Lecture Notes in
Computer Science), Vol. 10201. Springer, 855–879.

William W. Tait. 1967. Intensional Interpretations of Functionals of Finite Type I. J. Symb. Log. 32, 2
(1967), 198–212.

Matthijs Vákár, Ohad Kammar, and Sam Staton. 2019. A domain theory for statistical probabilistic
programming. PACMPL 3, POPL (2019), 36:1–36:29. https://dl.acm.org/citation.cfm?id=3290349

Frank D. Wood, Jan-Willem van de Meent, and Vikash Mansinghka. 2014. A New Approach to Probabilistic
Programming Inference. In AISTATS (JMLR Workshop and Conference Proceedings), Vol. 33. JMLR.org,
1024–1032.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

http://arxiv.org/abs/1707.02772
http://arxiv.org/abs/1707.02772
https://dl.acm.org/citation.cfm?id=3290349

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

PλωNK:Functional Probabilistic NetKAT 1:29

A ATOMIC COMPUTATIONS
The denotational semantics predicates, modifications and duplications all share a very similar
structure. Essentially, they immediately return a partial map from the unit value to a set,
that is somehow a transformation of the input set. We call these atomic computations
(see Smolka et al. [2017b]).

This property is very helpful, since, for the purpose of proving properties about their
denotational semantics, atomic computations can be treated uniformly.
To make this more precise, we first define how individual elements of the input set are

transformed. For predicates, there is a boolean function BP that decides if an element of
the input is retained in the output:

Definition A.1. Let P be a predicate such that Γ `c P :P 1, then BP : JΓK→ PH → {0, 1}
is defined as:

Bskip ρ x = 1

Bdrop ρ x = 0

BV1=V2 ρ (π :: h) = π.JV1K ρ = JV2K ρ
BP1∧P2 ρ x = BP1 ρ x ∧BP2 ρ x

BP1∨P2 ρ x = BP1 ρ x ∨BP2 ρ x

B¬P ρ x = ¬(BP ρ x)

Lemma A.2. Let P e a predicate such that Γ `c P :P 1, ρ ∈ JΓK and A ∈ 2PH : then

JpKp ρ A = {x ∈ A | BP ρ x}

Proof. By straightforward induction on the structure of the typing derivation. �

For atomic computations there is a function fP that transforms the input elements:

Definition A.3. Let C be an atomic computation, such that Γ `c C :P 1 then
fC : JΓK→ PH ⇀ PH is defined as:

fP ρ x =

{
x if BP ρ x

⊥ otherwise
fV1←V2

ρ (π :: h) = π[JV1K ρ 7→ JV2K ρ] :: h
fdup ρ (π :: h) = π :: π :: h

Lemma A.4. let C be an atomic computation such that Γ `c C :P 1, then JCK ρ A =
return (λ()→ {fC ρ x | x ∈ A}) for all ρ ∈ JΓK and A ∈ 2PH .

Here it should be understood that if fC ρ is undefined on some element x, the element is
not included in the resulting set.

Proof. By case analysis on the structure of the atomic computation C. If C is a predicate,
the required follows from the definition of JCK ρ A and Lemma ??. If C is a modification or
duplication, the required follows immediately from the definition. �

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Alexander Vandenbroucke and Tom Schrijvers

B RE-TRANSLATION OF PNK SEMANTICS
Smolka et al. [2017b] give denotational semantics for deterministic and probabilistic PNK
programs at the same time, by interpreting the same semantics in a different monad (the
identity monad and the monad of (sub)probability measures, respectively). We only concern
ourselves with the probabilistic semantics.
First note that they do not distinguish between ∧ and ; or ∨ and &, which we do. For

this reason we define J·KPNK as:

JCKPNK : 2PH → D(2PH)

JdropKPNK A = return ∅
JskipKPNK A = return A

Jf = nKPNK A = return ({π :: h ∈ A | π.f = n})
J¬P KPNK A = JP KPNK A>>=λB → return (B −A)

JP1 ∧ P2KPNK A = JP1KPNK A>>=JP2KPNK

JP1 ∨ P2KPNK A = JP1KPNK A>>=λB → JP2KPNK A>>=λC → return (B ∪ C)
Jf ← nKPNK A = return ({π[f 7→ n] :: h ∈ A | π :: h ∈ A})

JdupKPNK A = return ({π :: π :: h ∈ A | π :: h ∈ A})
JC1 ;C2KPNK A = JC1KPNK A>>=JC2KPNK

JC1 &C2KPNK A = JC1KPNK A>>=λB → JC2KPNK A>>=λC → return (B ∪ C)
JC1 ⊕ rC2KPNK A = r(JP1K A) + (1− r)(JP2K A)

JC∗KPNK A =
⊔
n≥0

JCnKPNK A

C PROOFS
C.1 Lemma 5.1

Proof. Let M = {m1, . . . ,mn}. By induction on n, we show that ΞM is the least upper
bound of M .

Case Base n = 0
If n = 0, then M = ∅ and the statement is vacuously true.

Case Induction n+ 1
Observe that:

ΞM = Ξ{m1, . . . ,mn,mn+1} = Ξ{Ξ{m1, . . . ,mn},mn+1}

By induction, we know that Ξ{m1, . . . ,mn} is the least upper bound of {m1, . . . ,mn}. Hence,
we must only show that for any m1,m2 ∈ D(X), m1Ξm2 is the least upper bound of m1

and m2. Recall that D is a continuation monad, then we can proceed as follows (except

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

PλωNK:Functional Probabilistic NetKAT 1:31

where otherwise noted, the proof proceeds by continuity):

m1Ξm2

=m1>>=λx→ m2>>=λy → returnx t y
=λk → m1 (λx→ m2 (λy → k (x t y)))
=λk → m1 (λx→ m2 (λy → k x t k y))

=λk → m1 (λx→ m2 ((λy → k x)
∨

(λy → k y)))

=λk → m1 (λx→ m2 (λy → k x)︸ ︷︷ ︸
k x

tm2 (λy → k y)︸ ︷︷ ︸
m2 k

)

m2 is a probability distribution, hence,
∫

dm2 = 1 and η-reduction

=λk → m1 (λx→ k x tm2 k)

=λk → m1 ((λx→ k x)
∨

(λx→ m2 k))

=λk → m1 (λx→ k x)︸ ︷︷ ︸
m1 k

tm1 (λx→ m2 k)︸ ︷︷ ︸
m2 k

η-reduction and m1 is a probability distribution, hence,
∫

dm2 = 1

=λk → m1 k tm2 k

=(λk → m1 k) t (λk → m2 k)

�

C.2 Theorem 5.4
Proof. By induction on the structure of the typing derivation, performing case analysis

on the final rule application.
In what follows, let Γ `v V :S, Γ `c C :T , and ρ ∈ JΓK, such that ∀(x : Sx) ∈ Γ : ρ(x) ∈

FSx .

Case T-Var V = xi
xi : Si ∈ Γ

Γ `v xi :Si

By assumption, JxiK ρ = ρ(xi) ∈ FSi .

Case T-Unit V = unit
Γ `v unit :1

By assumption, JunitK ρ = ∈ {()} = J1K = F1.

Case T-Thunk V = thunk C
Γ `c C :T

Γ `v thunk C :T T
Now, Jthunk CK ρ = JCK ρ ∈ FT = FT T , by induction.

Case T-Header V = hi
Γ `v hi :H

Immediately: JhiK ρ = hi ∈ {hi, . . . , hk} = JHK = FH.

Case T-Lit V = i
Γ `v i :N

Immediately: JiK ρ = i ∈ N = JNK = FN.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Alexander Vandenbroucke and Tom Schrijvers

Case Atomic Computations C = P or V1 ← V2 or dup
...

Γ `c C :P 1
By Lemma ??, we know that JCK ρ A = return (λ()→ {fC ρ x | x ∈ A}), then:

∫
g d(JCK ρ A)

Lemma ??

=

∫
g d(return (λ()→ {fC ρ x | x ∈ A}))∫
g d(return x) = g(x)

= g(λ()→ {fC ρ x | x ∈ A})
Since dom(λ()→ {fc ρ x | x ∈ A}) = {()}, χF (P 1)(λ()→ {fC ρ x | x ∈ A}) = 1

= χF (P 1)(λ()→ {fC ρ x | x ∈ A})g((λ()→ {fC ρ x | x ∈ A})∫
g d(return x) = g(x)

=

∫
χF (P 1) g d(return (λ()→ {fC ρ x | x ∈ A}))

Lemma ??

=

∫
χF (P 1) g d(JCK ρ A

Hence, JCK ρ ∈ FP 1.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

PλωNK:Functional Probabilistic NetKAT 1:33

Case T-Seq C = C1 ;C2

Γ `c C1 :T1 Γ `c C2 :T2

Γ `c C :T2

∫
g d(JC1 ;C2K ρ A)

by definition

=

∫
g d

JC1K ρ A)>>=λµ→ JC2K ρ

 ⋃
x∈dom(µ)

µ(x)


∫

g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
µ

∫
g d

JC2K ρ

 ⋃
x∈dom(µ)

µ(x)

 d(JC1K ρ A)

by induction for Γ `c C2 :T2

=

∫
µ

∫
χF (T2) g d

JC2K ρ

 ⋃
x∈dom(µ)

µ(x)

 d(JC1K ρ A)

∫
g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
µ

∫
χF (T2) g d

JC1K ρ A)>>=λµ→ JC2K ρ

 ⋃
x∈dom(µ)

µ(x)


by definition

=

∫
µ

∫
χF (T2) g d(JC1 ;C2K ρ A)

Hence JC1 ;C2K ρ ∈ FT2
.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1:34 Alexander Vandenbroucke and Tom Schrijvers

Case T-Par C = C1 &C2

Γ `c C1 :T Γ `c C2 :T

Γ `c C1 &C2 :

∫
g d(JC1 &C2K ρ A)

by definition

=

∫
g d(JC1K ρ A>>=λµ1 → JC2K ρ A>>=λµ2 → return (µ1

∨
µ2))∫

g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
µ1

∫
µ2

∫
g d(return (µ1

∨
µ2)) d(JC2K ρ A) d(JC1K ρ A)∫

g d(return x) = g(x)

=

∫
µ1

∫
µ2

g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)

by induction

=

∫
µ1

χF (T)(µ1)

∫
µ2

χF (T)(µ2) g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)

distributivity

=

∫
µ1

∫
µ2

χF (T)(µ1) χF (T)(µ2) g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)

dom(µ
∨

µn+1) = dom(µ1) ∪ dom(µ2),

then, µ1

∨
µ2 ∈ F (T) ⇐⇒ µ, µ2 ∈ F (T)

and therefore, χF (T)(µ1)χF (T)(µ2) = χF (T)(µ1

∨
µ2).

=

∫
µ1

∫
µ2

χF (T)(µ1

∨
µ2) g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)∫

g d(return x) = g(x)

=

∫
µ1

∫
µ2

∫
χF (T)(µ1

∨
µ2) g d(return (µ1

∨
µ2)) d(JC2K ρ A) d(JC1K ρ A)∫

g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
χF (T)(µ1

∨
µ2) g d(JC1K ρ A>>=λµ1 → JC2K ρ A>>=λµ2 → return (µ1

∨
µ2))

by definition

=

∫
χF (T)(µ1

∨
µ2) g d(JC1 &C2K ρ A

Hence, JC1 &C2K ρ ∈ FT2
.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

PλωNK:Functional Probabilistic NetKAT 1:35

Case T-Choice C = C1 ⊕r C2

Γ `c C1 :T Γ `c C2 :T

Γ `c C1 ⊕r C2 :

∫
g d(JC1 ⊕r C2K ρ A)

by definition

=

∫
g d(rJC1K ρ A+ (1− r)JC2K ρ A)

distributivity of addition, scalar multiplication

= r

∫
g d(JC1K ρ A) + (1− r)

∫
g d(JC2K ρ A))

by induction

= r

∫
χF (T) g d(JC1K ρ A) + (1− r)

∫
χF (T) g d(JC2K ρ A))

distributivity of addition, scalar multiplication

=

∫
χF (T) g d(rJC1K ρ A+ (1− r)JC2K ρ A)

by definition

=

∫
χF (T) g d(rJC1 ⊕r C2K ρ A)

Hence JC1 ⊕ rC2K ρ A ∈ FT .

Case T-Iter C = C1
∗ Γ `c C1 :P 1

Γ `c C1
∗ :P 1

∫
g d(JC1

∗K ρ A)

If µ : J1K ⇀ A, then µ : F1 ⇀ A and dom(µ) = {()} is finite. Hence µ ∈ F (P 1).

=

∫
χF (P 1) g d(JC1

∗K ρ A

Hence JC1
∗K ρ A ∈ FP 1.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1:36 Alexander Vandenbroucke and Tom Schrijvers

Case T-Produce C = produce V
Γ `v V :S

Γ `c produce V :P S∫
g d(Jproduce V K ρ A)

by definition

=

∫
g d(return (λJV K ρ→ A))∫
g d(return x) = g(x)

= g(λJV K ρ→ A)

By induction JV K ρ ∈ FS , and dom(λJV K ρ→ A) = {JV K ρ} is finite.
Hence, λJV K ρ→ A ∈ F (P S).

= χF (P S)(λJV K ρ→ A) g(λJV K ρ→ A)∫
g d(return x) = g(x)

=

∫
χF (P S) g d(return (λJV K ρ→ A))

by definition

=

∫
χP S g d(Jproduce V K ρ A)

Hence, Jproduce V K ρ ∈ FP S .

Case T-Force C = force V
Γ `v V :T T

Γ `c force V :T∫
g d(Jforce V K ρ A)

by definition

=

∫
g d(JV K ρ A)

Γ `v V :T T , by inversion, V = thunk C′ where Γ `c C′ :T .

=

∫
g d(Jthunk C ′K ρ A)

by definition

=

∫
g d(JC ′K ρ A)

by induction

=

∫
χF (T) g d(JC ′K ρ A)

by definition

=

∫
χF (T) g d(Jforce V K ρ A)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

PλωNK:Functional Probabilistic NetKAT 1:37

Hence, Jforce V K ρ ∈ FT .

Case T-Abs C = λx :S.C ′
x : S,Γ `c C ′ :T

Γ `c λX :S.C ′ :S → T

∫
g d(Jλx :S.C ′K ρ A)

by definition

=

∫
g d(return (λ(λv → JC ′K [x 7→ v]ρ)→ A))∫
g d(return x) = g(x)

= g(λ(λv → JC ′K [x 7→ v]ρ)→ A)

If v ∈ FS , then JC′K ρ ∈ FT by induction,

then, λ(λv → JC′K [x 7→ v]ρ)→ A ∈ FS → 2PH → FT , and

then, dom(λ(λv → JC′K [x 7→ v]ρ)→ A) = {λv → JC′K [x 7→ v]ρ} is finite.

=χF (S→T)(λ(λv → JC ′K [x 7→ v]ρ)→ A) g(λ(λv → JC ′K [x 7→ v]ρ)→ A)∫
g d(return x) = g(x)

=

∫
χF (S→T) g d(return (λ(λv → JC ′K [x 7→ v]ρ)→ A))

by definition

=

∫
χF (S→T) g d(Jλx :S.C ′K ρ A)

Hence, Jλx :S.C ′K ρ ∈ FS→T .

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1:38 Alexander Vandenbroucke and Tom Schrijvers

Case T-App C = C ′ V
Γ `c C :S → T Γ `v V :S

Γ `c C ′ V :T

∫
g d(JC ′ V K ρ A)

by definition

=

∫
g d(JC ′K ρ A>>=λµ→ Ξ{f (JV K ρ) µ(v) | v ∈ dom(µ)})∫
g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
µ

∫
g d(Ξ{f (JV K ρ) µ(v) | v ∈ dom(µ)}) d(JC ′K ρ A)

by induction

=

∫
µ

χF (S→T)(µ)

∫
d(Ξ{f (JV K ρ) µ(v) | v ∈ dom(µ)}) d(JC ′K ρ A)

By induction dom(µ) ⊆ FS→T . Then the required follows from Lemma ??.

=

∫
µ

∫
χF (T) g d(Ξ{f (JV K ρ) µ(v) | v ∈ dom(µ)}) d(JC ′K ρ A))∫

g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
χF (T) g d(JC ′K ρ A>>=λµ→ Ξ{f (JV K ρ) µ(v) | v ∈ dom(µ)})

by definition

=

∫
χF (T) g d(JC ′ V K ρ A)

Hence, JC ′ V K ρ ∈ FT .

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

PλωNK:Functional Probabilistic NetKAT 1:39

Case T-To C = C1 to x.C2

Γ `c C1 :P S x : S,Γ `c C2 :T

Γ `c C1 to x.C2 :T

∫
g d(JC1 to x.C2K ρ A)

by definition

=

∫
g d(JC1K ρ A>>=λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)})∫
g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
µ

∫
g d(Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}) d(JC1K ρ A)

by induction

=

∫
µ

χF (P S)(µ)

∫
g d(Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}) d(JC1K ρ A)

Since µ ∈ F (P S), it follows that ∀v ∈ dom(µ) : v ∈ FS , then, by induction, JC2K [x 7→ v]ρ ∈ FT .

=

∫
µ

∫
χF (T) g d(Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}) d(JC1K ρ A)∫

g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
χF (T) g d(JC1K ρ A>>=λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)})

by definition

=

∫
χF (T) g d(JC1 to x.C2K ρ A)

Hence, JC1 to x.C2K ρ ∈ FT . �

Lemma C.1. Let M = {m1, . . . ,mn} ⊆ JT K, such that
∫
f dmi =

∫
χF (T) f dmi, for

i = 1, . . . , n; then

∫
f d(ΞM) =

∫
χF (T) fd(ΞM)

Proof. By induction on n:

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1:40 Alexander Vandenbroucke and Tom Schrijvers

• n = 0

∫
g d(Ξ∅)

by definition,
∨
∅ = λx→ ⊥

=

∫
g d(return (λx→ ⊥))∫
g d(return x) = g(x)

=g(λx→ ⊥)
dom(()λx→ ⊥) is finite

=χF (T)(λx→ ⊥)g(λx→ ⊥)∫
g d(return x) = g(x)

=

∫
χF (T) g d(return (λx→ ⊥))

by definition,
∨
∅ = λx→ ⊥

=

∫
χF (T) g d(Ξ∅)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

PλωNK:Functional Probabilistic NetKAT 1:41

• Induction∫
g d(Ξ{m1, . . . ,mn,mn+1})

by definition

=

∫
g d(Ξ{m1, . . . ,mn}>>=λµ→ mn+1>>=λµn+1 → return (µ

∨
µn+1))∫

g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
µ

∫
µn+1

∫
g d(return (µ

∨
µn+1)) dmn+1 d(Ξ{m1, . . . ,mn})∫

g d(return x) = g(x)

=

∫
µ

∫
µn+1

g(µ
∨
µn+1) dmn+1 d(Ξ{m1, . . . ,mn})

by induction and by assumption for mn+1

=

∫
µ

χF (T)(µ)

∫
µn+1

χF (T)(µn+1) g(µ
∨
µn+1) dmn+1 d(Ξ{m1, . . . ,mn})

distributivity

=

∫
µ

∫
µn+1

χF (T)(µ) χF (T)(µn+1) g(µ
∨
µn+1) dmn+1 d(Ξ{m1, . . . ,mn})

dom(µ
∨

µn+1) = dom(µ) ∪ dom(µn+1),

then, µ
∨

µn+1 ∈ F (T) ⇐⇒ µ, µn+1 ∈ F (T)

and therefore, χF (T)(µ)χF (T)(µn+1) = χF (T)(µ
∨

µn+1).

=

∫
µ

∫
µn+1

χF (T)(µ
∨
µn+1) g(µ

∨
µn+1) dmn+1 d(Ξ{m1, . . . ,mn})

=

∫
χF (T) g d(Ξ{m1, . . . ,mn,mn+1}

�

C.3 Theorem 5.7
Proof. By induction on the structure of the typing derivation, performing case analysis

on the final rule application.
In what follows, let Γ `v V :S, Γ `c C :T , and ρ ∈ JΓK, such that ∀(x : Sx) ∈ Γ : ρ(x) ∈

CSx .

Case T-Var V = xi
xi : Si ∈ Γ

Γ `v xi :Si

By assumption, JxiK ρ = ρ(xi) ∈ CSi
.

Case T-Unit V = unit Γ `v unit :1

JunitK ρ = () ∈ {()} = J1K = C1

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

1:42 Alexander Vandenbroucke and Tom Schrijvers

Case T-Header V = hi Γ `v hi :H

JhiK ρ = hi ∈ {h1, . . . , hn} ∈ JHK = CH

Case T-Lit V = n Γ `v n :N

JnK ρ = n ∈ N = JNK = CN

Case T-Thunk V = thunk C
Γ `c C :T

Γ `v thunk C :T T

Case Atomic Computations C = P or V1 ← V2 or dup
...

Γ `c C :P 1
By Lemma ??, we know that JCK ρ A = return (λ()→ {fC ρ x | x ∈ A}), then:

(1) We show that JCK ρ is continuous:

⊔
i≥0

JCK ρ Ai

=
⊔
i≥0

(return (λ()→ {fc(x) | x ∈ Ai}))

=return

∨
i≥0

(λ()→ {fc(x) | x ∈ Ai})


=return

λ()→ ⋃
i≥0

{fc(x) | x ∈ Ai}


=return

λ()→ {fc(x) | x ∈ ⋃
i≥0

Ai}


=JCK ρ

(⋃
i≥0

Ai

)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

PλωNK:Functional Probabilistic NetKAT 1:43

(2)

∫
g d (JCK ρ A)

by definition

=

∫
g d (return (λ()→ {fC(x) | x ∈ A}))∫
g d(return x) = g(x)

=g(λ()→ {fC(x) | x ∈ A})
dom(λ()→ {fC(x) | x ∈ A}) = C(1)
Thus, λ()→ {fC(x) | x ∈ A} ∈ CP 1

=χC(P 1)(λ()→ {fC(x) | x ∈ A}) g(λ()→ {fC(x) | x ∈ A})∫
g d(return x) = g(x)

=

∫
χC(P 1)g d (return (λ()→ {fC(x) | x ∈ A}))

by definition

=

∫
χC(P 1)g d (JCK ρ A)

Thus JCK ρ ∈ CP 1.

Case T-Seq C = C1 ;C2

Γ `c C1 :T1 Γ `c C2 :T2

Γ `c C :T2

(1) We show that JC1 ;C2K ρ A is continuous:

⊔
i≥0

JC1 ;C2K ρ Ai

=
⊔
i≥0

JC1K ρ Ai>>=λµ→ JC2K ρ
(⋃

x∈dom(µ)

µ(x)
)

continuity of >>=, assume λµ→ JC2K ρ
(⋃
x∈domµ

µ(x)
)

is continuous

=
⊔
i≥0

(JC1K ρ Ai)>>=λµ→ JC2K ρ
(⋃

x∈dom(µ)

µ(x)
)

=JC1K ρ
(⋃

i≥0

Ai

)
>>=λµ→ JC2K ρ

(⋃
x∈dom(µ)

µ(x)
)

=JC1 ;C2K ρ
(⋃
i≥0

Ai

)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

1:44 Alexander Vandenbroucke and Tom Schrijvers

Moreover,

⊔
i≥0

JC2K ρ
(⋃

x∈dom(µi)

µi(x)
)

=JC2K ρ
(⋃

i≥0

x∈dom(µi)

µi(x)
)

=JC2K ρ
(⋃

i≥0

x∈dom(
∨

j≥0 µj)

µi(x)
)

=JC2K ρ
(⋃
x∈dom(

∨
j≥0 µj)

(∨
j≥0

µj

)
(x)

)

(2)

∫
g d(JC1 ;C2K ρ A)

=

∫
g d(JC1K ρ A>>=λµ→ JC2K ρ

⋃
x∈dom(µ)

µ(x))

=

∫
µ

∫
g d(JC2K ρ

⋃
x∈dom(µ)

µ(x)) d(JC1K ρ A

By induction on Γ `c C2 :T2.

=

∫
µ

∫
χCT2

g d(JC2K ρ
⋃

x∈dom(µ)

µ(x)) d(JC1K ρ A

=

∫
χCT2

g; d(JC1K ρ A>>=λµ→ JC2K ρ
⋃

x∈dom(µ)

µ(x))

∫
χCT2

g d(JC1 ;C2K ρ A)

Thus JC1 ;C2K ρ ∈ CT2
.

Case T-Par C = C1 &C2

Γ `c C1 :T Γ `c C2 :T

Γ `c C1 &C2 :

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

PλωNK:Functional Probabilistic NetKAT 1:45

(1) We show that JC1 &C2K ρ is continuous:⊔
i≥0

JC1 &C2K ρ Ai

=
⊔
i≥0

(
JC1K ρ Ai>>=λµ1 → JC2K ρ Ai>>=λµ2 → return (µ1

∨
µ2)

)
Continuity of >>= and return (µ1

∨
µ2) is continuous

=
⊔
i≥0

(JC1K ρ Ai)>>=λµ1 →
⊔
i≥0

(JC2K ρ Ai)>>=λµ2 → return (µ1

∨
µ2)

=JC1K ρ
(⋃
i≥0

Ai

)
>>=λµ1 → JC2K ρ

(⋃
i≥0

Ai

)
>>=λµ2 → return (µ1

∨
µ2)

=JC1 &C2K ρ
(⋃
i≥0

)
(2) ∫

g d(JC1 &C2K ρ A)

=

∫
g d(JC1K ρ A>>=λµ1 → JC2K ρ A>>=λµ2 → return (µ1

∨
µ2)

=

∫
µ1

∫
µ2

g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)

=

∫
µ1

χC(T)(µ1)

∫
µ2

χC(T)(µ2)g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)

Induction on Γ `c C1 :T ,Γ `c C2 :T

=

∫
µ1

∫
µ2

χC(T)(µ1)χC(T)(µ2)g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)

If µ1, µ2 ∈ C(T), then µ1

∨
µ2 ∈ C(T)

Hence χC(T)(µ1)χC(T)(µ2) = χC(T)(µ1)χC(T)(µ2)

=

∫
µ1

∫
µ2

χC(T)(µ1)χC(T)(µ2)χC(T)(µ1

∨
µ2)g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)

Induction on Γ `c C1 :T ,Γ `c C2 :T

=

∫
µ1

∫
µ2

χC(T)(µ1

∨
µ2)g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)

=

∫
χC(T)g d(JC1K ρ A>>=λµ1 → JC2K ρ A>>=λµ2 → return (µ1

∨
µ2))

=

∫
χC(T)g d(JC1 &C2K ρ A)

Thus JC1C⊕2K ρ ∈ CT .

Case T-Choice C = C1 ⊕r C2

Γ `c C1 :T Γ `c C2 :T

Γ `c C1 ⊕r C2 :

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

1:46 Alexander Vandenbroucke and Tom Schrijvers

(1) We show that JC1 ⊕ C2K ρ is continuous.⊔
i≥0

JC1 ⊕ C2K ρ Ai

=
⊔
i≥0

(r(JC1K ρ Ai) + (1− r)(JC2K ρ Ai))

= r
⊔
i≥0

(JC1K ρ Ai) + (1− r)
⊔
i≥0

(JC2K ρ Ai))

= r(JC1K ρ
(⋃
i≥0

Ai

)
) + (1− r)(JC2K ρ

(⋃
i≥0

Ai

)
)

=JC1 ⊕ C2K ρ
(⋃
i≥0

Ai

)

(2) ∫
g d(JC1 ⊕r C2K ρ A)

= r

∫
g d(JC1K ρ A) + (1− r)

∫
g d(JC2K ρ A)

by induction

= r

∫
χC(T)g d(JC1K ρ A) + (1− r)

∫
χC(T)g d(JC2K ρ A)

=

∫
χC(T)g d

(
r(JC1K ρ A) + (1− r)(JC2K ρ A)

)
=

∫
χC(T)g d

(
JC1 ⊕r C2K ρ A)

Thus, JC1 ⊕ C2K ρ ∈ CT .

Case T-Iter C = C1
∗ Γ `c C1 :P 1

Γ `c C1
∗ :P 1

(1) We show that JC1
∗K ρ is continuous:⊔

i≥0

(JC1
∗K ρ Ai)

=
⊔
i≥0

(
⊔
n≥0

JCn
1 K ρ Ai)

=
⊔
n≥0

JCn
1 K ρ

(⋃
i≥0

Ai

)
=JC1

∗K ρ
(⋃
i≥0

Ai

)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

PλωNK:Functional Probabilistic NetKAT 1:47

(2) ∫
g d(JC1

∗K ρ A)

=

∫
g d(

⊔
n≥0

JCn
1 K ρ A)

C1 = J1K = {()}, then clearly µ ∈ J1K ⇀ 2PH = C(P 1)

=

∫
χC(P 1)g d(

⊔
n≥0

JCn
1 K ρ A)

=

∫
χC(P 1)g d(JC1

∗K ρ A)

Thus JCK ρ ∈ CP 1.

Case T-Produce C = produce V
Γ `v V :S

Γ `c produce V :P S

(1) We show that Jproduce V K ρ is continuous.⊔
i≥0

Jproduce V K ρ Ai

=
⊔
i≥0

return (λJV K ρ→ Ai)

=return
∨
i≥0

(λJV K ρ→ Ai)

=return (λJV K ρ→
⋃
i≥0

Ai)

=Jproduce V K ρ
(⋃
i≥0

Ai

)
(2) ∫

g d(Jproduce V K ρ A

=

∫
g d(return (λJV K ρ→ A))

=g(λJV K ρ→ A)

Γ `c V :S, by induction V ∈ CS
=χC(P S)(λJV K ρ→ A)g(λJV K ρ→ A)

=

∫
χC(P S)g d(return (λJV K ρ→ A))

=

∫
χC(P S)g d(Jproduce V K ρ A)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

1:48 Alexander Vandenbroucke and Tom Schrijvers

Thus Jproduce V K ρ ∈ CP S .

Case T-Force C = force V
Γ `v V :T T

Γ `c force V :T

Jforce V K ρ = JV K ρ ∈ CT T = CT

where the first and last equality are by definition, the middle one is by induction.

Case T-Abs C = λx :S.C ′
x : S,Γ `c C ′ :T

Γ `c λX :S.C ′ :S → T

(1) We show that Jλx :S.C ′K ρ is continuous:⊔
i≥0

Jλx :S.CK ρ Ai

=
⊔
i≥0

return (λ(λv → JC ′K [x 7→ v]ρ)→ Ai)

=return
∨
i≥0

(λ(λv → JC ′K [x 7→ v]ρ)→ Ai)

=return ((λ(λv → JC ′K [x 7→ v]ρ)→
⋃
i≥0

Ai)

=Jλx :S.CK ρ
(⋃
i≥0

Ai

)

(2) ∫
g d(Jλx :S.C ′K ρ A)

=

∫
g d(return λ(λv → JC ′K [x 7→ v]ρ)→ A)

=g(λ(λv → JC ′K [x 7→ v]ρ)→ A)

If v ∈ CS , then JC′K [x 7→ v]ρ ∈ CT , by induction.

Hence, (λv → JC′K [x 7→ v]ρ) ∈ CS → CT
=χC(S→T)g(λ(λv → JC ′K [x 7→ v]ρ)→ A)g(λ(λv → JC ′K [x 7→ v]ρ)→ A)

=

∫
χC(S→T)g d(return λ(λv → JC ′K [x 7→ v]ρ)→ A)

=

∫
χC(S→T)g d(Jλx :S.C ′K)

Thus, Jλx :S.C ′K ρ ∈ CS→T .

Case T-App C = C ′ V
Γ `c C :S → T Γ `v V :S

Γ `c C ′ V :T

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

PλωNK:Functional Probabilistic NetKAT 1:49

(1) We show that JC ′ V K ρ is continuous:

⊔
i≥0

JC ′ V K ρ Ai

=
⊔
i≥0

(JC ′K ρ Ai>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)})

continuity of >>=, assume λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)} is continuous

=
⊔
i≥0

(JC ′K ρ Ai)>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)})

=JC ′K ρ
(⋃
i≥0

Ai

)
>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)})

=JC ′ V K ρ
(⋃
i≥0

Ai

)

Moreover,

⊔
i≥0

Ξ{f (JV K ρ) µi(f) | f ∈ dom(µi)}

=
⊔
i≥0

f∈dom(µi)

(f (JV K)ρ) µi(f))

=
⊔
i≥0

f∈dom(
∨

j≥0 µj)

(f (JV K)ρ) µi(f))

=
⊔

f∈dom(
∨

i≥0 µi)

f (JV K)ρ) (
⋃
i≥0

µi(f))


=

⊔
f∈dom(

∨
i≥0 µi)

f (JV K)ρ) (
∨
i≥0

µi)(f)


= Ξ{f (JV K ρ) (

∨
i≥0

µi) | f ∈ dom(
∨
i≥0

µi)}

Discharging the assumption above.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

1:50 Alexander Vandenbroucke and Tom Schrijvers

(2)

∫
g d(JC ′ V K ρ A)

=

∫
g d(JC ′K ρ A>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)})

=

∫
µ

∫
g d(Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}) d(JC ′K ρ A)

by induction

=

∫
µ

χC(S→T)(µ)

∫
g d(Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}) d(JC ′K ρ A)

µ ∈ C(S → T), then f JV K ρ ∈ CT , thus
∫

g d(f JV K ρA) =

∫
χC(T)g d(f JV K ρA)

Now apply Lemma ??.

=

∫
µ

χC(S→T)(µ)

∫
χC(T)g d(Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}) d(JC ′K ρ A)

=

∫
µ

∫
χC(T)g d(Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}) d(JC ′K ρ A)

=

∫
χC(T)gd(JC ′ V K ρ A)

Thus, JC ′ V K ρ ∈ CT .

Case T-To C = C1 to x.C2

Γ `c C1 :P S x : S,Γ `c C2 :T

Γ `c C1 to x.C2 :T

(1) We show that JC1 to x.C2K ρ is continuous:

⊔
i≥0

(JC1 to x.C2K ρ Ai)

=
⊔
i≥0

(JC1K ρ Ai>>=λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)})

continuity of >>=, assume λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)} is continuous.

=
⊔
i≥0

(JC1K ρ Ai)>>=λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}

by induction

=JC1K ρ
(⋃
i≥0

Ai

)
>>=λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

PλωNK:Functional Probabilistic NetKAT 1:51

Moreover, ⊔
i≥0

Ξ{JC2K [x 7→ v]ρ µi(v) | v ∈ dom(µi)}

=
⊔
i≥0

f∈dom(µi)

JC2K [x 7→ v]ρ µi(v)

=
⊔
i≥0

f∈dom(
∨

j≥0 µj)

JC2K [x 7→ v]ρ µi(v)

=
⊔

f∈dom(
∨

j≥0 µj)

JC2K [x 7→ v]ρ
(⋃
i≥0

µi(v)
)

=
⊔

f∈dom(
∨

j≥0 µj)

JC2K [x 7→ v]ρ
(∨
i≥0

µi

)
(v)

=Ξ

JC2K [x 7→ v]ρ
(∨
i≥0

µi

)
(v) | v ∈ dom(

(∨
i≥0

µi

)
)


This discharges the above assumption.

(2)∫
g d(JC1 to x.C2K ρ A)

=

∫
g d(JC1K ρ A>>=λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)})

=

∫
µ

∫
g d(Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}) d(JC1K ρ A)

by induction

=

∫
µ

χC(P S)(µ)

∫
g d(Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}) d(JC1K ρ A)

By induction JC2K [x 7→ v]ρ ∈ CT , thus
∫

g d(JC2K [x 7→ v]ρ A) =

∫
χC(T)g d(JC2K [x 7→ v]ρ A)

Now apply Lemma ??.

=

∫
µ

χC(P S)(µ)

∫
χC(T)g d(Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}) d(JC1K ρ A)

=

∫
µ

∫
χC(T)g d(Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}) d(JC1K ρ A)

Thus JC1 to x.C2K ρ ∈ CT . �

Lemma C.2. Let M = {m1, . . . ,mn} ⊆ JT K, such that
∫
f dmi =

∫
χC(T) f dmi, for

i = 1, . . . , n; then ∫
f d(ΞM) =

∫
χC(T) fd(ΞM)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

1:52 Alexander Vandenbroucke and Tom Schrijvers

Proof.

ΞM

=

∫
µ1

· · ·
∫
µn

∫
g d(return (µ1

∨
· · ·µn)) dmn · · · dm1

=

∫
µ1

χC(T)(µ1) · · ·
∫
µn

χC(T)(µn)

∫
g d(return (

n∨
i=1

µi)) dmn · · · dm1

If µ1, . . . , µn ∈ C(T), then µ1

∨
· · ·

∨
µn ∈ C(T).

Since dom(µ1

∨
· · ·

∨
µn) = dom(µ1) ∪ · · · ∪ dom(µn) ⊆ CS or CS → CT .

=

∫
µ1

χC(T)(µ1) · · ·
∫
µn

χC(T)(µn)

∫
χC(T) g d(return (

n∨
i=1

µi)) dmn · · · dm1

=

∫
µ1

· · ·
∫
µn

∫
χC(T) g d(return (

n∨
i=1

µi)) dmn · · · dm1

�

C.4 Theorem 5.8
Recall the definition of PNK semantics given in Appendix ??. To prove Theorem 5.8, we
actually prove the following lemmas:

Lemma C.3. Let P be a closed predicate. Then for all A ∈ 2PH :

return (JP Kp () A) = JP KPNK A

Proof. By induction on the structure of predicates:

Cases drop,skip, tests f = n. : straightforward by definition.

Case ¬P .

return (J¬P Kp () A) = return (A− JP Kp () A)

= return (JP Kp () A)>>=λB → return (A−B)

= JP KPNK A>>=λB → return (A−B)

= J¬P KPNK A

Case P1 ∧ P2.

return (JP1 ∧ P2Kp () A) = return {h ∈ A | BP1∧P2
() h}

= return {h ∈ A | BP1
() h and BP2

() h}
= return {h ∈ {h ∈ A | BP1

() h} | BP2
() h}

= return {h ∈ A | BP1 () h}>>=λA′ → return {h ∈ A′ | BP2 () h}
= JP1KPNK A>>=λA′ → JP2KPNK A′

= JP1KPNK A>>=JP2KPNK

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

PλωNK:Functional Probabilistic NetKAT 1:53

Case P1 ∨ P2.

return (JP1 ∨ P2Kp () A)

= return (JP1Kp () A ∪ JP2Kp () A)

= return (JP1Kp () A)>>=λB → return (JP2Kp () A)>>=λC → return (B ∪ C)
= JP1KPNK A>>=λB → JP2KPNK A>>=λC → return (B ∪ C)
= JP1 ∨ P2KPNK A

�

Lemma C.4. Let C be a closed probabilistic computation. Define ψ(m) = m>>=λµ →
return

(
µ
(
()
))

. Then for all A ∈ 2PH :

ψ(JCK () A) = JCKPNK A

Proof. By induction on the structure of probabilistic computations. Note that we have
the following computation rules for ψ:

ψ(return (λ()→ A)) = return A

ψ(m1>>= f) = m1>>=(ψ ◦ f)
ψ(r ·m) = r · ψ(m)

ψ(m1 +m2) = ψ(m1) + ψ(m2)

ψ(
⊔
i≥0

mi) =
⊔
i≥0

ψ(mi)

Atomic Computations. For atomic computations C, we have

ψ(JCK () A) = ψ(return (λ()→ {fC () h | h ∈ A}))
= return {fC () h | h ∈ A}
Immediate for f ← n and dup, for predicates this follows from Lemma ??
= JCKPNK A

Sequential composition.

ψ (JC1 ;C2K () A)

=ψ

JC1K () A>>=λµ→ JC2K ()
(⋃

x∈dom(µ)

µ(x)
)

=ψ
(
JC1K () A>>=λµ→ JC2K () µ

(
()
))

=ψ
(
JC1K () A>>=λµ→ return µ

(
()
)
>>=JC2K ()

)
=ψ (ψ(JC1K () A)>>=JC2K ())

=ψ(JC1K () A)>>=(ψ ◦ JC2K ())

=JC1KPNK A>>=JC2KPNK

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

1:54 Alexander Vandenbroucke and Tom Schrijvers

Parallel composition.

ψ (JC1 &C2K () A)

=ψ
(
JC1K () A>>=λµ1 → JC2K () A>>=λµ2 → return (µ1

∨
µ2)

)
=ψ (JC1K () A>>=λµ1 → JC2K () A>>=λµ2 → return (λ()→ µ1(()) ∪ µ2(())))

=JC1K () A>>=λµ1 → JC2K () A>>=λµ2 → return (µ1(()) ∪ µ2(()))

=JC1K () A>>=λµ1 → return µ1(())>>=λA1 →
JC2K () A>>=λµ2 → return µ2(())>>=λA2 → return (A1 ∪A2)

=ψ (JC1K () A)>>=λA1 → ψ (JC2K () A)>>=λA2 → return (A1 ∪A2)

=JC1KPNK A>>=λA1 → JC2KPNK A>>=λA2 → return (A1 ∪A2)

=JC1 &C2KPNK ()A

Probabilistic Choice.

ψ(JC1 ⊕r C2K () A)

=ψ (rJC1K () A+ (1− r)(JC2K () A))

=r · ψ (JC1K () A) + (1− r) · ψ (JC2K () A)

=r(JC1KPNK A) + (1− r)(JC2KPNK A)

=JC1 ⊕r C2KPNK A)

Iteration.

ψ(JC∗K () A)

=ψ(
⊔
n≥0

(JCnK () A)

=
⊔
n≥0

ψ(JCnK () A)

=
⊔
n≥0

JCnKPNK A

=JC∗KPNK A

�

C.5 Theorem 6.2
Proof. We prove the following slightly stronger statement: Let R1, R2 be terminals

such that
c R1 : T ,
c R2 :P 1 and R1 R2, then JR1K = JR2K if T = P 1, otherwise
JR2K = JR1 ; skipK .
We proceed by induction on the elaboration relation. In the first three cases of , the

result is immediate.
In what follows, assume R11 R21 and R12 R22,
c R11 :T1,
c R11 :T2,
If R11 ;R12 R21 ;R22, then JR21 ;R22K = JR11 ;R22K, by induction independently of T1.

Then either JR21 ;R22K = JR11 ;R12K or JR21 ;R22K = JR11 ;R12 ; skipK according to T2.
If R11 &R12 R21 &R22, then the required follows immediately by induction, inversion

and the definition of the denotational semantics.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

PλωNK:Functional Probabilistic NetKAT 1:55

If R11⊕R12 R21⊕R22, then Note that T1 = T2, the required result then either follows
immediately, by induction, or by induction and distributivity of ; over ⊕.
Assume R1 R2. It is easy to show by induction on n that if JR1K = JR2K, then

JRn
1 K = JRn

2 K for all n. It then follows that JR1
∗K = JR2

∗K
The penultimate case follows by inversion and the definition of the denotational semantics.

The final case is immediate after inversion. �

C.6 Theorem 6.4
Proof. The proof proceeds by induction on the structure of the evaluation rules and

case analysis on the final rule.
In cases E-Pred, E-Mod, E-Dup, E-Prod and E-Abs, C is a terminal. By reflection,

C = R, Hence JCK = JRK.
In cases E-Seq, E-Par, E-Choice, the required follows by unfolding the definition and

applying the induction hypothesis.

Case E-Iter. Note that

JC∗K ρ A =
⊔
n≥0

JCnK ρ A andJR∗K ρ A =
⊔
n≥0

JRnK ρ A

Then we we need to show that ∀n ≥ 0 : JCnK = JRnK . This follows by induction on n.

Case E-Force.

Jforce thunk CK ρ A = Jthunk CK ρ A = JCK ρ A = JRK ρ A

Case E-AppAbs.

JC1 V K ρ A
by definition

=JC1K ρ A>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}
by induction

=Jλx :S.C11K ρ A>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}
by definition

=return (λ(λv → JC11K [x 7→ v]ρ)→ A)>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}
by definition

=Ξ{(λv → JC11K [x 7→ v]ρ) (JV K ρ) A}
β-reduction

=JC11K [x 7→ (JV K ρ)]ρ A
Lemma ??

=J[x 7→ V]C11K ρ A
by induction

=JRK ρ A

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

1:56 Alexander Vandenbroucke and Tom Schrijvers

Case E-AppSeq.

JC1 V K ρ A
by definition

=JC1K ρ A>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}
by induction

=JR11 ;R12K ρ A>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}
by definition

=JR11K ρ A>>=λµ1 → JR12K ρ
(⋃

x∈dom(µ1)

µ1(x)
)
>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}

associativity of >>=, by definition

=JR11K ρ A>>=λµ1 → JR12 V K ρ
(⋃

x∈dom(µ1)

µ1(x)
)

by induction

=JR11K ρ A>>=λµ1 → JR2K ρ
(⋃

x∈dom(µ1)

µ1(x)
)

by definition
=JR11 ;R2K ρ A

Case E-AppChoice.

JC1 V K ρ A
by definition

=JC1K ρ A>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}
by induction

=JR11 ⊕R12K ρ A>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}
=
(
r(JR11K ρ A) + (1− r)(JR12K ρ A)

)
>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}

distributivity

=r(JR11K ρ A)>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}
+ (1− r)(JR12K ρ A)

)
>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}

by definition

=r(JR11 V K ρ A) + (1− r)(JR12 V K ρ A)
by induction

=r(JR1K ρ A) + (1− r)(JR2K V ρA)

by definition

=JR1 ⊕R2K ρ A

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

PλωNK:Functional Probabilistic NetKAT 1:57

Case E-ToProduce.

JC1 to x.C2K ρ A
by definition

=JC1K ρ A>>=λµ→ Ξ{JC2K [x 7→ v] µ(v) | v ∈ dom(µ)}
by induction

=Jproduce V K ρ A>>=λµ→ Ξ{JC2K [x 7→ v] µ(v) | v ∈ dom(µ)}
by definition

=return (λJV K ρ→ A)>>=λµ→ Ξ{JC2K [x 7→ v] µ(v) | v ∈ dom(µ)}
left-unit of >>=

=Ξ{JC2K [x 7→ (JV K ρ)]ρ A}
=JC2K [x 7→ (JV K ρ)]ρ A

by Lemma ??
=J[x 7→ V]C2K ρ A

by induction
=JR2K ρ A

Case E-ToSeq. like E-AppSeq

Case E-ToChoice. like E-AppChoice

Case E-ToIter.

JC1 to x.C2K ρ A
=JC1K ρ A>>=λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}
=JR1

∗K ρ A>>=λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}
by inversion

=JR1
∗K ρ A>>=λµ→ JC2K [x 7→ ()]ρ µ(())

Lemma ??

=JR1
∗K ρ A>>=λµ→ J[x 7→ unit]C2K ρ µ(())

=JR1
∗K ρ A>>=λµ→ J[x 7→ unit]C2K ρ

(⋃
x∈dom(µ)

µ(x)
)

by induction

=JR1
∗K ρ A>>=λµ→ JR2K ρ

(⋃
x∈dom(µ)

µ(x)
)

by definition

=JR1
∗ ;R2K ρ A

Case E-ToPar. Note that the inversion for Γ
c C1 &C2 :T says that T = P 1. Then
the argument proceeds analogously to E-ToIter. �

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

1:58 Alexander Vandenbroucke and Tom Schrijvers

Lemma C.5. Let V, V̂ be a values and C be a computation such that x : Ŝ,Γ `v V :S,
Γ `v V̂ : Ŝ and x : Ŝ,Γ `c C :T . Let ρJΓK then

JV K [x 7→ (JV̂ K ρ)]ρ = J[x 7→ V̂]V K ρ

JCK [x 7→ (JV̂ K ρ)]ρ = J[x 7→ V̂]CK ρ

Proof. By induction on the structure of the typing derivation. We can ignore T-Unit,
T-Header, T-Lit, T-Skip,T-Drop,T-Dup, since they don’t contain any variables.

Case T-Thunk V = thunk C
Γ `c C :T

Γ `v thunk C :T T
Jthunk CK [x 7→ JV̂ K ρ] = JCK [x 7→ JV̂ K ρ] = J[x 7→ V̂]CK ρ = J[x 7→ V̂]thunk CK ρ

Case Atomic Computations C = P or V1 ← V2 or dup
...

Γ `c C :P 1
For predicates we can prove:
• Negation
B¬P [x 7→ JV̂ K ρ]ρ = ¬BP [x 7→ JV̂ K ρ]ρ = ¬B[x 7→V̂]P ρ = B¬[x 7→V̂]P ρ = B[x 7→V̂]¬P ρ

• Disjunction
BP1∨P2 [x 7→ JV̂ K ρ]ρ

=BP1
[x 7→ JV̂ K ρ]ρ or BP2

[x 7→ JV̂ K ρ]ρ
=B[x 7→V̂]P1

ρ or B[x7→V̂]P2
ρ

=B[x 7→V̂ (P1∨P2)
ρ

And similar for T-Conj
• Guard

BV1=V2 ([x 7→ JV̂ K]ρ) (π :: h)

=π.JV1K [x 7→ JV̂ K]ρ = JV2K [x 7→ JV̂ K]ρ

=π.J[x 7→ V̂]V1K ρJ[x 7→ V̂]V2K ρ
=B[x7→V̂]V1=V2

ρ (pi :: h)

Hence, BP [x 7→ JV̂ K ρ]ρ = B[x 7→V̂]P ρ, and

fP [x 7→ JV̂ K ρ]ρ h =

{
h ifBP [x 7→ JV̂ K ρ]ρ h
⊥ otherwise

=

{
h ifB[x 7→V̂]P ρ h

⊥ otherwise
= f[x 7→V̂]P ρ h

For T-Mod:
fV1←V2

[x 7→ JV̂ K ρ]ρ (π :: h) = π[JV1K [x 7→ JV̂ K ρ]ρ 7→ JV2K [x 7→ JV̂ K ρ]ρ] :: h

= π[J[x 7→ V̂]V1K ρ 7→ J[x 7→ V̂]V2K ρ] :: h
= f[x 7→V̂]V1←V2

ρ (π :: h)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

PλωNK:Functional Probabilistic NetKAT 1:59

Thus we can conclude that for an atomic computation C,

JCK [x 7→ JV̂ K ρ]ρ A = return (λ()→ {fC [x 7→ JV̂ K ρ]ρ h | h ∈ A})
= return (λ()→ {f[x7→V̂]C ρ h | h ∈ A})

= J[x 7→ V̂ C]K ρ A

Case T-Seq C = C1 ;C2

Γ `c C1 :T1 Γ `c C2 :T2

Γ `c C :T2

JC1 ;C2K [x 7→ JV̂ K ρ]ρ A = JC1K [x 7→ JV̂ K ρ]ρ A>>=λµ→ JC2K [x 7→ JV̂ K ρ]ρ
⋃

y∈dom(µ)

µ(y)

by induction

= J[x 7→ V̂]C1K ρ A>>=λµ→ J[x 7→ V̂]C2K ρ
⋃

y∈dom(µ)

µ(y)

= J[x 7→ JV̂ K](C1 ;C2)K ρ A

Case T-Par C = C1 &C2

Γ `c C1 :T Γ `c C2 :T

Γ `c C :T

JC1 ;C2K [x 7→ JV̂ K ρ]ρ A

= JC1K [x 7→ JV̂ K ρ]ρ A>>=λµ1 → JC2K [x 7→ JV̂ K ρ]ρ A>>=λµ2 → return (µ1

∨
µ2)

by induction

= J[x 7→ V̂]C1K ρ A>>=λµ1 → J[x 7→ V̂]C2K ρ A>>=λµ2 → return (µ1

∨
µ2)

= J(C1 &C2)[x 7→ V̂]K ρ A

Case T-Choice C = C1 ⊕ C2

Γ `c C1 :T Γ `c C2 :T

Γ `c C :T

JC1 ⊕ C2K [x 7→ JV̂ K ρ]ρ A

= rJC1K [x 7→ JV̂ K ρ]ρ A+ (1− r)(JC2K [x 7→ JV̂ K ρ]ρ A)

= rJ[x 7→ V̂]C1K ρ A+ (1− r)(J[x 7→ V̂]C2K ρ A)

Case T-Produce C = produce V
Γ `v V :S

Γ `c produce V :T

Jproduce V K [x 7→ JV̂ K ρ]ρ A

= return (λJV K [x 7→ JV̂ K ρ]ρ→ A) = return (λJ[x 7→ V̂]V K ρA→)

= J[x 7→ V̂]produce V K ρ A

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

1:60 Alexander Vandenbroucke and Tom Schrijvers

Case T-Force C = force V
Γ `v V :T T

Γ `c force V :T

Jforce V K [x 7→ JV̂ K ρ]ρ A

= JV K [x 7→ JV̂ K ρ]ρ A

= J[x 7→ V̂]V K ρ A

= J[x 7→ V̂](force V)K ρ A

Case T-Abs C = λx :S.C ′
x : S,Γ `c C ′ :T

Γ `c λX :S.C ′ :S → T

Jλy :S.C ′K [x 7→ JV̂ K ρ]ρ A

= return (λλv → JC ′K [y 7→ v, x 7→ JV̂ K ρ]ρA→)

= return (λλv → J[x 7→ V̂]C ′K [y 7→ v]ρA→)

= J[x 7→ V̂](λy :S.C ′)K ρ A

Case T-Iter C = C1
∗ Γ `c C1 :P 1

Γ `c C1
∗P 1 :

JC1
∗K [x 7→ JV̂ K]ρ A

=
⊔
n≥0

JCn
1 K [x 7→ JV̂ K]ρ A

=
⊔
n≥0

J[x 7→ V̂]Cn
1 K ρ A

= J[x 7→ V̂](C1
∗)K ρ A

Case T-App C = C ′ V
Γ `c C :S → T Γ `v V :S

Γ `c C ′ V :T

JC ′ V K [x 7→ JV K ρ]ρ A

= JC ′K [x 7→ JV K ρ]ρ A>>=λµ→ Ξ{f JV K [x 7→ JV̂ K ρ]ρ µ(f) | f ∈ dom(µ)}

= J[x 7→ V̂]C ′K ρ A>>=λµ→ Ξ{f J[x 7→ V̂]V K ρ µ(f) | f ∈ dom(µ)}

= J[x 7→ V̂]C ′ V K ρ A

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

PλωNK:Functional Probabilistic NetKAT 1:61

Case T-To C = C1 to y.C2

Γ `c C1 :P S y : S,Γ `c C2 :T

Γ `c C1 to y.C2 :T

JC1 to y.C2K [x 7→ JV K ρ]ρ A
= JC1K [x 7→ JV K ρ]ρ A>>=λµ→ Ξ{JC2K [y 7→ v, x 7→ JV K ρ]ρ µ(v) | v ∈ dom(µ)}

= J[x 7→ V̂]C1K ρ A>>=λµ→ Ξ{J[x 7→ V̂]C2K [y 7→ v]ρ µ(v) | v ∈ dom(µ)}

= J[x 7→ V̂](C1 to y.C2)K ρ A

�

Since Γ
v V :S implies Γ `v V :S and Γ
c C :T implies Γ `c C :T , it follows that:

Lemma C.6. Let V, V̂ be a values and C be a computation such that x : Ŝ,Γ
v V :S,
Γ
v V̂ : Ŝ and x : Ŝ,Γ
c C :T . Let ρJΓK then

JV K [x 7→ (JV̂ K ρ)]ρ = J[x 7→ V̂]V K ρ

JCK [x 7→ (JV̂ K ρ)]ρ = J[x 7→ V̂]CK ρ

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Overview
	2.1 A Brief Introduction to PNK
	2.2 Modelling in PNK
	2.3 Extending PNK with functions
	2.4 Explicit Thunks and Sequencing
	2.5 Semantics of Iteration
	2.6 Key Ideas

	3 Syntax and Type System
	3.1 Syntax of Terms
	3.2 Types and Type System

	4 A Convenient Category for PNK
	4.1 -Complete Partial Orders
	4.2 Quasi-Borel Spaces
	4.3 -Quasi-Borel Spaces
	4.4 A Commutative Probabilistic Powerdomain

	5 Denotational Semantics
	5.1 Semantics of Types
	5.2 Semantics of Terms
	5.3 Finite Maps
	5.4 Continuity
	5.5 Conservativity

	6 Compilation to PNK
	6.1 Elaboration
	6.2 Reduction
	6.3 Meta-theory of Reduction
	6.4 Discussion

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

