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PλωNK:Functional Probabilistic NetKAT

ALEXANDER VANDENBROUCKE, KU Leuven, Belgium
TOM SCHRIJVERS, KU Leuven, Belgium

This work presents PλωNK, a functional probabilistic network programming language that extends
Probabilistic NetKAT (PNK). Like PNK, it enables probabilistic modelling of network behaviour,
by providing probabilistic choice and infinite iteration (to simulate looping network packets). Yet,
unlike PNK, it also offers abstraction and higher-order functions to make programming much more
convenient.

The formalisation of PλωNK is challenging for two reasons: Firstly, network programming induces
multiple side effects (in particular, parallelism and probabilistic choice) which need to be carefully
controlled in a functional setting. Our system uses an explicit syntax for thunks and sequencing
which makes the interplay of these effects explicit. Secondly, measure theory, the standard domain
for formalisations of (continuous) probablistic languages, does not admit higher-order functions. We
address this by leveraging ω-Quasi Borel Spaces (ωQBSes), a recent advancement in the domain
theory of probabilistic programming languages.

We believe that our work is not only useful for bringing abstraction to PNK, but that—as part
of our contribution—we have developed the meta-theory for a probabilistic language that combines
advanced features like higher-order functions, iteration and parallelism, which may inform similar
meta-theoretic efforts.

Additional Key Words and Phrases: Probabilistic Programming, Network Modelling, Quasi-Borel
Spaces, ω-QBS, NetKAT

1 INTRODUCTION
Probabilistic programming languages simplify the creation of probabilistic models. They sepa-
rate the model from the algorithm that infers probabilities for it (e.g., Church [Goodman et al.
2012], Anglican [Wood et al. 2014], Gen [Cusumano-Towner et al. 2019], ProbLog [Fierens
et al. 2015]). Instead of writing a custom procedure tailored to a particular model, the
same generic algorithm is used for all programs written in the programming language. Thus,
the algorithm can be re-used for many programs, lessening the implementation effort and
maintenance burden of the probabilistic model.
In this work we develop a probabilistic programming language, called PλωNK.1 PλωNK

combines diverse features such as higher-order functions, probabilistic choice and parallelism.
It is a domain specific language for probabilistically modelling computer networks. The main
purpose of PλωNK is to model computer networks and network protocols at an abstract
level, and verify a wide variety of properties of such models, e.g., latency, fault-tolerance,
or the absence of routing loops. The motivation is the same as for formal verification of
computer programs or the mechanical checking of proofs. Namely, during the design of
complex networks or protocols, even the best designers are bound to make some mistakes
or errors. A computer-checked specification can detect such deficiencies before they are
deployed [Anderson et al. 2014; Foster et al. 2016].
1Pronounced as “plonk”.
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1:2 Alexander Vandenbroucke and Tom Schrijvers

PλωNK extends Probabilistic NetKAT (PNK) [Foster et al. 2016]. Here is a small PNK
program:(

sw = 1 ; drop ⊕0.1 sw ← 2︸ ︷︷ ︸
node 1

& sw = 2 ; drop ⊕0.1 sw ← 1︸ ︷︷ ︸
node 2

)∗
1 2

10%

The program on the left models the network on the right. This network consists of only
two nodes, 1 and 2, with a bidirectional link between them. The link between the nodes is
unreliable, e.g., it is a radio link with poor reception. This causes a 10% of the packets to
be lost in transit.
At this point it is not important to understand the meaning of this program exactly.

Instead, note that this example already features a lot of repetition: the sub-programs to the
left and to the right of the &-operator—modelling the behaviour of node 1 or 2, respectively—
essentially mirror each other. Unfortunately, PNK offers no facilities to take advantage of
this insight. The key advantage of PλωNK over PNK is that we can exploit it by abstracting
over the behaviour of both parts using functions:

forward = λsrc.λdst.(sw = src; drop ⊕0.1 sw ← dst)
(forward 1 2︸ ︷︷ ︸

node 1

& forward 2 1︸ ︷︷ ︸
node 2

)
∗

1 2
10%

The function forward captures the general forwarding behaviour of the nodes, indepen-
dently of a particular node. While this change arguably does not make the program shorter,
the improved readability and maintainability make writing and extending the program much
more convenient. For instance, adding a third node is now much easier:

forward = λsrc.λdst.(sw = src; drop ⊕0.1 sw ← dst)
(forward 1 2︸ ︷︷ ︸

node 1

& forward 2 3︸ ︷︷ ︸
node 2

& forward 3 1︸ ︷︷ ︸
node 3

)
∗ 1 2

3

10%

10
%

10%

Explicit Syntax for Thunks and Sequencing. Three distinct side-effects are in evidence in
the above examples: (1) state—as we explain later, sw ← 1 modifies packets; (2) parallelism—
the subprograms for node 1, 2 and 3 are run in parallel with &; and (3) probability—through
the ⊕0.1-operator. We carefully chose the previous example such that no arguments to the
function contained any side-effects. Indeed, all arguments were constants, either 1, 2 or 3.
Although this is already quite useful, we want to be more flexible in our full language, and
also apply functions to non-constant expressions. In this case, should the side-effects of
this expression be executed before the application and only the resulting value passed to
the function (Call-By-Value)? Or, should the expression remain unevaluated, allowing the
function to decide when to evaluate it (Call-By-Name)? Both strategies have their merits
and there is no clear winner.
Rather than fix any particular order, we choose to explicitly segregate expressions into

computations (which have side-effects) and values (which do not), loosely inspired by Call-
By-Push-Value [Levy 2001].

The sequencing of side-effects then becomes explicit: either the computation is evaluated,
producing a value which is then passed to the function, or the computation is explicitly
turned into a value, by wrapping it in a thunk. While we use CBPV as an inspiration for the
syntax and semantics, our language does not enjoy all theoretical properties of CBPV and
thus does not model CBPV exactly.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.
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PλωNK:Functional Probabilistic NetKAT 1:3

Semantics. Our language, PλωNK, has higher-order functions, iteration and probabilistic
choice. This significantly complicates the formalisation of the semantics of our language. After
all, the standard approach to define denotational semantics for a continuous probabilistic
language is based on measure theory. Yet, measure theory does not support general higher-
order functions [Aumann et al. 1961], a central feature of our language. Thus, to support
higher-order functions, we use (ω-)Quasi-Borel Spaces [Heunen et al. 2017; Vákár et al.
2019] as the domain of our denotational semantics. This is a recently developed alternative
axiomatisation of probability theory, which admits higher-order functions. Moreover, it
possesses the ωCPO structure required to model PNK style iteration (Kleene-star).
Another challenge we face is the interaction of higher-order functions, state, parallelism

and probability. In our language, a computation can produce a function in a manner that is
simultaneously probabilistic and non-deterministic (parallel), and also locally2 modifying
state. Moreover, we must avoid accidentally duplicating work of parallel branches, since
parallel composition (&) is not idempotent (i.e., a program p is not equivalent to p& p). As a
result, defining the correct semantics for function application and sequencing is complicated
and highly non-trivial. Note that this challenge is present in any calculus that supports
function application, probability, parallelism and state—in fact, it is somewhat easier in our
setting, as side-effects cannot occur in function arguments.

As we mentioned earlier, PλωNK’s primary purpose is the specification of network models
and the verification of properties of those models. It shares this purpose with PNK, which has
several computational properties that make it well suited for this purpose: The denotational
semantics of PNK can be approximated [Smolka et al. 2017b] computationally, through
an iterative procedure. Moreover, at the cost of disallowing the dup operation, PNK has
decidable program equivalence [Smolka et al. 2017a, 2019]. Thus, if we show that a small—
hence, easy to prove correct—program is correct, we implicitly show that all equivalent
larger programs are also correct.
We show that our language also possesses these properties, subject to some (minor)

restrictions: the approximation procedure exists, if we forbid parallel choice between functions.
Essentially, this restricts PλωNK’s parallelism to the parallelism that is present in PNK.
Also, we conjecture that disallowing the dup operation, as for PNK, results in decidable
program equivalence for PλωNK. The specific contributions of this work are:
• We define the probabilistic programming language PλωNK, for modelling computer
networks and protocols. It features higher-order functions, probabilistic choice and
parallelism. PλωNK extends the earlier programming language PNK.
• PλωNK extends PNK with a simple type system. The type system is important, not
only for rejecting invalid programs, but also to ensure that all programs Strongly
Normalise [Pierce 2002]. On the one hand, strong normalisation indirectly makes our
denotational semantics well-defined. On the other hand, we exploit this property for
compiling PλωNK to PNK. Recall that PλωNK is a specification language, and the
flexibility of general recursion and real arithmetic is not required.
• We define denotational semantics for PλωNK. As PλωNK contains higher-order func-
tions, iteration and probabilistic choice, we need to leverage recent advances in the
domain theory for probabilistic programs by Vákár et al. [2019]. They define an al-
ternative formalisation of probability theory that admits higher-order functions, and
iterations, the ω-Quasi-Borel Spaces (ωQBSes).

2By local, we mean that the state is not shared between different parallel or probabilistic branches.
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1:4 Alexander Vandenbroucke and Tom Schrijvers

We prove several well-definedness theorems about this denotational semantics. The (pen-
and-paper) proofs for several of these theorems use logical relations whose definitions
are interesting in their own right. We also prove that this semantics is a conservative
extension of PNK’s semantics as given by Smolka et al. [2017b]. The proofs themselves
can be found in Appendix ??.
• We develop a subclass of PλωNK programs which can be compiled into PNK. Through
the type system, we restrict the parallelism in PλωNK to the parallelism present in
PNK. This makes the values that are produced in parallel more predictable, allowing
compilation to succeed. Moreover, PNK itself lies entirely within this class. We have
mechanised the meta-theory of PλωNK and the compilation procedure with the aid
of the Abella proof-assistant [Gacek 2008]. Theorems bearing a check mark (X) have
been mechanised. The proof scripts are available in the supplementary material.
Compilation preserves the denotational semantics of PλωNK. Since our semantics is a
conservative extension, the compiled PNK program behaves identically to the original
PλωNK source program. These theorems are not easily encoded in Abella, and thus
have been proven the classical way, with pen and paper (See Appendix ??).
• We have implemented a prototype of PλωNK in Haskell. The prototype implements
a small extension to PλωNK that performs type reconstruction. The implementation
can be used to run the small examples that are presented in this article. It is part of
the supplementary material.

2 OVERVIEW
2.1 A Brief Introduction to PNK
The central notion of PNK are packet histories, i.e., ordered sequences of packets. We write
π ::h for a history consisting of its most recent packet π, followed by the earlier history h.
The empty history is written as 〈〉. The set of all packet histories is denoted PH .

PNK programs operate on sets of these histories. Packets themselves are intended to be a
simplified model of real-world binary network packets. As such, they consist of a number
of header fields, which are assigned numeric values. Contrary to real-world packets, they
do not contain a payload, because it is irrelevant for routing decisions. In our examples we
commonly use the following headers: the switch the packet is currently at (sw) and the port
the packet is currently at (pt).
PNK programs are constructed by composing a number of primitive operations. These

primitives are predicates (e.g., drop or sw = 1), assignments (e.g., pt← 2), and duplication.
Recall that PNK programs operate on sets of packets histories. Predicates filter this set,
allowing only specific histories. For instance, tests such as sw = 1 only allow histories where
the first packet’s header sw is set to 1, whereas drop denies all packets, producing an empty
set. Assignments instead modify the histories in the set. For instance, the expression pt← 2
sets the pt header to 2 for the first packet of every history. Duplication dup duplicates and
prepends the first packet of every history in the set, i.e. for history π :: h, dup produces a
history π :: π :: h.
Primitive operations can be composed in three ways:3 sequentially, parallelly or prob-

abilistically. Sequential composition (;) executes both operations one after the other, the
output of the first becoming the input of the second. For instance, sw = 1 ; pt← 2 first filters
out all histories where the sw header of the first packet is not 1, and then modifies the pt

3Actually, there is a distinction between composition for predicates and other operations, but it is not
relevant here.
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Network

1

2 3

4

10
%

PNK
Topology
t =

(
sw = 1 ; pt = 2 ;
(sw ← 2 ; pt← 1)⊕0.9 drop

)
& (sw = 1 ; pt = 3 ; sw ← 3 ; pt← 1)
& (sw = 2 ; pt = 4 ; sw ← 4 ; pt← 2)
& (sw = 3 ; pt = 4 ; sw ← 4 ; pt← 3)

Routing
p = (sw = 1 ; pt← 2)&(sw = 2 ; pt← 4)

PλωNK
Prelude
send = λsrc.λdst.(sw = src ; pt = dst)
recv = λsrc.λdst.(sw ← dst ; pt← src)
link = λsrc.λdst.(send src dst ; recv src dst)

forward = λsrc.λact.(sw = src ; force act)
to = λdst.(pt← dst)

Topology
t = (send 1 2 ;(recv 1 2⊕0.9 drop))
& link 1 3& link 2 4& link 3 4

Routing
p = forward 1 (thunk (to 2))

& forward 2 (thunk (to 4))
p′ = forward 1 (thunk (to 2⊕0.5 to 3))

& forward 2 (thunk (to 4))
& forward 3 (thunk (to 4))

Main Expression
(p ; t)

∗
; sw = 4

Fig. 1. PNK and PλωNK models of a small network consisting of 4 nodes.

header of the first packet of every history. Parallel composition (&) executes both operations
independently and then takes the union of the resulting sets. For instance, sw = 1& sw = 2
allows only packet histories that have the first packet’s header set to either 1 or 2. Finally,
probabilistic choice (⊕r) chooses either the left side with probability r, or the right with
probability 1− r. For instance sw ← 1⊕0.5 sw ← 2, probabilistically chooses to set the first
packet’s header to 1 or to 2. If we sample from this expression, we see a set where the first
packets’ headers are either all set to 1, or all set to 2. The probability of either event is 50%.

2.2 Modelling in PNK
Let us consider how to model the network shown in the top-left corner of Figure 1 in PNK.
The network consists of four nodes, with links from node 1 to nodes 2 and 3, and from nodes
2 and 3 to node 4. The objective is to send a network packet from node 1 to node 4, routed
through either node 2 or node 3.
In order to accurately model the network, the program must model two independent

aspects: the network topology, that is, the links connecting the nodes (and their behaviour),
and the routing programs running on the nodes, receiving and forwarding incoming packets.
The PNK program modelling the network is shown on the left of Figure 1.

Topology. The topology is captured by the term t on the left-hand side of Figure 1. It is a
parallel composition of terms. It models, from top to bottom, the links from 1 to 2, from
1 to 3, from 2 to 4 and from 3 to 4. Each of the links consists of a number of statements,
composed sequentially. For each link, it is verified that a packet is actually at the origin of

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2018.
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1:6 Alexander Vandenbroucke and Tom Schrijvers

the link by a series of guards (e.g., sw = 1 ; pt = 3, for the link from 1 to 3). Then, the packet
is modified, setting sw and pt to the next switch on the link (e.g. sw ← 3 ; pt ← 1), thus
transmitting the packet across the link. For the link between 1 and 2, we model unreliability
by making a probabilistic choice (⊕0.9), choosing normal transmission 90% of the time and
dropping (with drop) the packet 10% of the time. Packets that do not match the switch and
port are rejected before their headers are modified.

Routing. The routing program is captured by the term p, a parallel composition of the
routing programs for each node. For each node, it is verified that the sw field matches the
node, and a node-specific routing program is then run: at node 1, packets are forwarded to
node 2 and at node 2 packets are forwarded to node 4. Node 3 is unused for now.

Main Expression. The main expression (at the bottom of Figure 1) combines topology and
routing, and provides an exit predicate. The (·)∗, Kleene star, means iteration. Thus, the
program p ; t is repeated until the exit predicate sw = 4 is satisfied. This predicate checks
that the packet has arrived at node 4, its destination.
Having a PNK model of our network allows us to estimate the probability of certain

queries, such as the probability that a packet reaches its destination (90% in this case)
or measure the expected congestion. This is by no means an exhaustive list. A slightly
modified program permits us to estimate the latency (i.e., the average length of a path), or
by restricting the language, program equivalence becomes decidable, creating an easy way to
verify correctness [Smolka et al. 2017a]. For additional examples and details, the interested
reader should consult the work of Foster et al. [2016].

2.3 Extending PNK with functions
Even the small example from the previous section is quite tedious and repetitive to write.
The root cause of this issue is the complete lack of abstraction facilities in PNK, since it is
well-known that abstraction improves modularity and enables code re-use.

Arguably one of the most basic abstraction facilities available in programming languages
is the venerable λ-abstraction. In PλωNK, which additionally supports λ-abstractions, we
instead encode the network topology (which features a lot of repetition) more concisely.4
First we identify several recurring patterns and give them appropriate names. These are
shown in the top-right corner of Figure 1. The primitive patterns are sending and receiving.
which are combined to create a link. Functions such as send, recv and link could be defined
in a library or a language prelude, to be reused by other programs.

We can now re-write the topology as show on the right of Figure 1. The links from 1 to 3,
2 to 4 and 3 to 4 simply call the appropriate function. The link from 1 to 2 must directly
rely on sending and receiving, but even here, we can see the benefits of the approach in
reducing duplication.

The functional re-write of the routing program p features a more advanced use of functions
(program p on the right-hand side of Figure 1). The function forward takes a source
node (src) and a forwarding action act to perform. This action is a thunk, a suspended
computation, which can be executed or forced, with the primitive force. The justification for
these constructions is explained in the next section. Since thunks are essentially functions,

4The code presented here is untyped, for didactic purposes. From Section 3 onwards we will use typed
PλωNK, although type reconstruction for PλωNK is not difficult.
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PλωNK:Functional Probabilistic NetKAT 1:7

forward is a higher-order function. A more extensive use of higher-order functions can be
found in the Gossip Protocols example provided with the supplementary material.5
To create the action act we use the function function to. This function sets the packet’s

pt header to the given destination dst .
In p, the forwarding program for node 1 calls to, immediately suspends the call (using

thunk), and passes it to forward . Forwarding for node 2 proceeds in a similar fashion.
The main expression is as before. Due to the additional structure, the readability of the

program has improved considerably. Furthermore, code re-use has gone up, making the
program easier to change. For instance, to model an additional link, from 1 to 4, we only need
to add the call (link 1 4), instead of the more lengthy (sw = 1 ; pt = 4 ; sw ← 4 ; pt← 1).

For another example, suppose we want to change the forwarding behaviour of our network,
such that node 1 now chooses to forward to either node 2 or node 3 with equal probability,
then we need only extend p slightly, obtaining p′. The necessary additions have been
highlighted in Figure 1. In short, this section demonstrates the advantage for readability
and maintainability that PλωNK provides.

2.4 Explicit Thunks and Sequencing
As we have shown in the previous section, it is highly desirable that functions are higher-
order, in the sense that functions—and PNK expressions—can occur as arguments to other
functions (e.g., forward). Then it seems reasonable to expect to be able to write the following:

sw ← 0 ;(λx.sw = 1) (sw ← 1)

However, this presents an issue, since sw ← 1 has a side-effect: it sets a header in the packet.
The evaluation order is now important: if sw ← 1 is evaluated before the application, this
program accepts the packet, otherwise it drops the packet. The former corresponds to a
Call-By-Value (CBV) order, the latter to a Call-By-Name (CBN) order. There is no clear
reason to prefer one over the other, and both are useful in practice.

Indeed, we decide to not fix any particular evaluation order. Instead, we segregate terms
into values and computations, inspired by the syntax of Call-By-Push-Value (CBPV) [Levy
2001]. Computations can be evaluated (possibly with side-effects), as opposed to values,
which cannot be directly evaluated. Functions (classified as computations themselves) can
only be applied to values. PNK terms are also computations, so the expression above is
invalid in PλωNK syntax, since sw ← 1 is not a value.

Instead, we obtain two possible variants, depending on whether CBV or CBN is intended
(here the to is a primitive, not the function to defined earlier):

CBV: sw ← 0 ;(sw ← 1) to y.((λx.sw = 1) y)
CBN: sw ← 0 ;(λx.sw = 1) (thunk (sw ← 1))

In the first case, the primitive to (sequencing) evaluates sw ← 1, including side effects, and
binds the value that is produced to the variable y, followed by applying the function to y.
In the second case, sw ← 1 is thunked, and the function is applied to this thunk instead.

2.5 Semantics of Iteration
Foster et al. [2016] define the semantics of PNK in terms of measure theory. Semantically, a
program denotes a function that maps sets of packet histories to a probability distribution
over sets of packet histories. For example, the program src = 1, given input set A, returns

5https://bitbucket.org/AlexanderV/probnetkat-lambda/src/1d12d/gossip-protocols.pnk
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1:8 Alexander Vandenbroucke and Tom Schrijvers

a probability distribution that has probability 1 at the set {π :: h ∈ A | π.sw = 1} (the
notation π.sw refers to the value of the sw header of π) and is zero everywhere else.

Iteration (*) is defined as an infinite stochastic process. The formalisation of this process
is quite involved. Smolka et al. [2017b] give an equivalent, but much simpler definition, based
on standard notions from domain theory.
In our work we retain this much simpler second definition, but extend it to support

higher-order functions. However, since their domain is measure-theoretic, it does not support
such functions. For this reason, we cannot use their domain directly. Instead, we rely on
ωQBS, a domain developed by Vákár et al. [2019], which has domain-theoretic structure,
supports measure-theory-like operations and admits higher-order functions.

2.6 Key Ideas
Denotational Semantics. We give a denotational semantics to our language within the

ωQBS framework. In addition to PNK’s semantics, ours also manages variable environments,
and passes values (e.g. headers, constants, thunks) instead of just sets of packet histories.
The well-definedness of the semantics depends on two properties: First, to apply the

domain-theoretic approach, we need to show that a specific notion of continuity holds.
Second, we need a property that is similar to, or a consequence of, strong normalisation,
but for denotational semantics. Informally, this property says that the denotation of a
program produces only finitely many distinct values in a parallel fashion. The proofs for
both properties have a similar structure: they proceed by induction on typing derivations of
PλωNK programs and make use of logical relations. The definitions of these logical relations
are interesting in their own right (see Sections 5.3 and 5.4).

Approximation and Decidable Equivalence. The streamlined semantics of Smolka et al.
[2017b] formalises an iterative approximation procedure for PNK programs. The idea is
to expand the iterations (*) up to n times, for some finite n. We define a procedure to
compile a PλωNK program to PNK, while preserving the denotational semantics. Because
our semantics is conservative with respect to the semantics of PNK, we can approximate the
compiled program. Unfortunately, this compilation is only valid for a subclass of PλωNK
programs. Essentially, the trick is to impose additional restrictions in the type system, such
that the parallelism in PλωNK is limited to the parallelism that occurs in PNK.

Moreover, without the dup operation, PNK exhibits decidable program equivalence [Smolka
et al. 2017a]. The dup operation duplicates the packet at the head of a packet history. Thus,
removing this operation restrains all packet histories to the same length, making the state
space of a program essentially discrete and finite. We conjecture that the same restriction
also makes PλωNK’s state space discrete. However, under this restriction, PNK produces only
discrete distributions. Many useful properties are expressible in this sub-language [Smolka
et al. 2019]. However, it cannot express some relevant properties, e.g. latency. Hence, this
setting is less interesting than the full language. For this reason, we focus on full PλωNK.
We revisit these issues in Section 6.

3 SYNTAX AND TYPE SYSTEM

3.1 Syntax of Terms
The syntax of PλωNK (Figure 2) is a straightforward extension of the syntax of PNK with
higher-order functions, thunks and sequencing. We segregate syntax terms into values and
computations.
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Terms.
x, y ∈ Var Variables
h ∈ Headers Header names
n ∈ N Header values
r ∈ R Weights
V = x | unit | h | n | thunk C Values
P = skip | drop | V = V | ¬P | P ∧ P | P ∨ P Predicates
C = P | V ← V | dup | C ;C | C &C | C ⊕r C | C∗ PNK computations

| produce V | force V | C to x.C | λx :S.C | C V New computations

Types and Contexts.
S = 1 | H | N | T T Value types
T = S → T | P S Computation types
Γ = ∅ | x :S,Γ Contexts

Fig. 2. PλωNK syntax.

Values V are either variables x, unit values, header names h (from a finite set Headers,
e.g. sw , pt , . . .), literals n (natural numbers, the values that can be assigned to a header) or
thunks (suspended computations). Values are never evaluated, but thunks can be forced.

Computations C, on the other hand, can be evaluated, but cannot occur as the argument
to a function. Consequently, only values can appear on the right-hand side of an application.
All original PNK constructs are computations C. Predicates P are a subsort of those.

Atomic predicates are skip, drop or tests V = V . Composite predicates are negation ¬,
conjunction (∧) or disjunction (∨).6 The remaining features inherited from PNK are (non-
predicate) computations in PλωNK. They assign values to headers V ← V , duplicate packets
with dup, compose sequentially (;) or in parallel (&), make a probabilistic choice ⊕r (we
sometimes elide the weight r when it is not relevant) or iterate ∗. We call the computations
that PλωNK inherits from PNK the probabilistic computations.

Finally, PλωNK adds the following computations to PNK: producing a value V (produce V ),
forcing a thunk (force V ), sequencing computations with C1 to x.C2, defining a function
λx :S.C, or applying functions C to values V with (C V ).

We also define terminal computations, i.e., computations that cannot be further evaluated:
R = P | V ← V | dup | R ;R | R&R | R⊕r R | R∗
| produce V | λx :T.C

3.2 Types and Type System
Because PNK terms cannot “go wrong” or get stuck, the language did not come with a type
system. This is no longer true for PλωNK, which introduces stuck terms with the lambda
calculus. For this reason, we enrich PλωNK with a simple type system.

The chief reason for choosing simple types is strong-normalisation (see Theorem 6.8). In
order to not compromise PλωNK’s suitability as a modelling language, certain properties,
6Contrary to previous work [Foster et al. 2016], we do distinguish the syntax for disjunctive and conjunc-
tive predicates from parallel and sequential composition of computations, for improved clarity. Earlier
developments used the same operators for both.
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Γ `v V :S

x : S ∈ Γ

Γ `v x :S Γ `v unit :1 Γ `v h :H Γ `v n :N
Γ `c C :T

Γ `v thunk C :T T

Γ `c C :T

Γ `c skip :P 1 Γ `c drop :P 1
Γ `v V1 :H Γ `v V2 :N

Γ `c V1 = V2 :P 1
Γ `c P :P 1
Γ `c ¬P :P 1

Γ `c P1 :P 1 Γ `c P2 :P 1
Γ `c P1 ∧ P2 :P 1

Γ `c P1 :P 1 Γ `c P2 :P 1
Γ `c P1 ∨ P2 :P 1

Γ `v V1 :H Γ `v V2 :N
Γ `c V1 ← V2 :P 1 Γ `c dup :P 1

Γ `c C1 :T1 Γ `c C2 :T2

Γ `c C1 ;C2 :T2

Γ `c C1 :T Γ `c C2 :T

Γ `c C1 &C2 :T

Γ `c C1 :T Γ `c C2 :T

Γ `c C1 ⊕ C2 :T

Γ `c C :P 1
Γ `c C∗ :P 1

Γ `v V :S

Γ `c produce V :P S
Γ `v V :T T

Γ `c force V :T

Γ `c C1 :P S x :S,Γ `c C2 :T

Γ `c C1 to x.C2 :T

x : S,Γ `c C :T

Γ `c λx :S.C :S → T

Γ `c C :S → T Γ `v V :S

Γ `c C V :T

Fig. 3. PλωNK’s typing rules.

such as approximation and program equivalence must remain decidable, requiring terminating
reduction for all programs.
For simplicity, we elide other less essential features, such as sum and product types, but

such features could be added without too much trouble.
The bottom part of Figure 2 shows the syntax of types. Types are divided into two kinds:

value types and computation types. There are 4 forms of value types: unit types 1, header
labels H, header literals N and thunks T T . Furthermore, there are 2 forms of computation
types: function types S → T and producer types P S. By construction, the argument position
of a function type can only be a value type. Likewise, only value types can appear inside
producer (P ) types. Since only these constructions bind variables, only value types appear
in contexts.
Figure 3 shows the typing rules. We define two mutually recursive typing judgements:

Γ `v V :S for typing value terms, and Γ `c C :T for typing computation terms.
The rules for values are straightforward. Predicates are typed as computations, and always

have type P 1 because they do not produce useful results, only useful side-effects. This also
applies to the rules for modification and duplication (see below).
When sequentially composing computations C1 ;C2, only C2 determines the type of the

whole computation. For parallel composition and choice, the types of both computations must
be the same. Intuitively, the former discards the value produced by the first computation,
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while the latter two must somehow combine the two produced values, requiring them to
have the same type.
Iteration C∗ has the same type as C, which is only allowed to be P 1, for the following

reason. Consider that the iteration could be zero or more times, and thus in the zero case
would require inventing a value of an arbitrary type, which we cannot do unless we restrict
iteration to a fixed type with a known value—the unit type. The remaining rules in Figure 3
are derived from CBPV [Levy 2001].

However, unlike CBPV, PλωNK does not exhibit certain type isomorphisms, for instance:

S → S′ → T 6∼= S′ → S → T

This is because in our language computations of function type can have side-effects without
being applied, whereas in CBPV computation of function type are only evaluated upon
application. In particular, applying a computation of type S → S′ → T to a value x produces
a computation of type S′ → T which may have side-effects that depend on x.

In the previous sections, we have also used “top-level” definitions of the form f = · · · . These
are to be understood as syntactic sugar. They desugar into λ-abstraction and application as
follows:

f1 = C1

C2
 (λy :T T.[f1 7→ force y]C2) (thunk C1)

where y is fresh, and `c C1 :T . Recall that only values may be bound to variables. Since the
C1 on the right-hand side of the equality is a computation, we first convert this expressions
to a value by thunking them, and then forcing them where they occur in C2.

4 A CONVENIENT CATEGORY FOR PλωNK
Measure theory is the usual model for continuous7 distributions. However, for our case
classical measure theory has a critical shortcoming: function spaces of measure spaces are
not necessarily measurable themselves, making measure theory unsuitable as the model of a
programming language with λ-abstraction [Aumann et al. 1961]. Put in a different way, the
category of measurable spaces is not Cartesian closed.

Quasi-Borel Spaces [Heunen et al. 2017] are a recent advancement in the state-of-the-art
of the semantics of probabilistic programs, which are Cartesian closed and provide an
alternative formalisation of probabilistic structures. An even more recent development are
the ω-Quasi-Borel Spaces [Vákár et al. 2019], which additionally provide ωCPO structure.
We require this structure to model iterations.

The remainder of this section provides a brief overview of ω-Quasi-Borel Spaces, which
we use as the semantic domain for the denotational semantics of PλωNK that is presented
in the next section. Eager readers may skip ahead to Section 5 on a first reading and come
back when they want more detail.

4.1 ω-Complete Partial Orders
Semantically modelling the behaviour of PλωNK or indeed plain PNK requires a semantic
domain that captures the recursive nature of iterations C∗. For this purpose we use a
partially ordered domain and make sure that the denotation increases with each iteration
7At first glance, it might seem counter-intuitive that PλωNK could admit continuous probability distributions.
However, Foster et al. [Foster et al. 2016] show an example of a PNK program where this is the case: let p be
a program that outputs two distinct packets with equal probability, then p ; (dup ; p)∗ denotes a continuous
distribution.
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step, i.e., it ascends. The result of the entire iteration is then given by the least upper bound
of the denotations of the iteration steps, and we must choose the ordering in such a way that
these least upper bounds always exist. The ω-Complete Partial Orders (ωCPOs) are the
orders with this property: in an ωCPO the least upper bounds of ascending chains always
exist. Let us now define these concepts more precisely.

Definition 4.1. Let 〈P,v〉 be some poset, an ω-chain is a sequence (xn)n∈N for xn ∈ P ,
such that ∀i, j ∈ N : i ≤ j implies xi v xj . We will sometimes write such a chain as
x0 v x1 v · · · .

Definition 4.2. The poset P is an ω-Complete Partial Order (ωCPO) when every ω-chain
has a least upper bound (lub)

⊔
n≥0 xn ∈ P (sometimes also denoted

∨
n≥0 xn). The least

upper bound is the smallest element of P that is larger than every xn. More formally,

∀n ∈ N : xn v
⊔
n≥0

xn, and ∀z ∈ P : (∀n ∈ N : xn ⊆ z)⇒
⊔
n≥0

xn v z.

Example 4.3. The powerset 2X of any set X is an ωCPO when ordered by subset inclusion
(⊆). The lub of any ω-chain X0 ⊆ X1 ⊆ · · · (with Xi ⊆ X) is precisely the union

⋃
i≥0Xi.

In fact, 〈2X ,⊆〉 is a complete lattice, meaning that any subset of 2X has a lub.

Example 4.4. The functions f : X → P into an ωCPO 〈P,vP 〉 also form an ωCPO, under
the pointwise order �, defined as f � g ⇐⇒ ∀x ∈ X : f(x) vP g(x). In this instance, we
usually denote the lub by

∨
.

Continuous functions between two ωCPOs 〈P,vP 〉 and 〈Q,vQ〉 are monotone functions
f : P → Q such that f preserves least upper bounds, i.e. for all ω-chains (an)n∈N in P ,

f(
⊔
n≥0

xn) =
⊔
n≥0

f(xn).

Note that the first lub is in P , the second in Q. The monotonicity requirement ensures that
this second lub actually exists, by ensuring that (f(xn))n∈N is an ω-chain.

The ωCPOs and continuous functions between them form a Cartesian closed category, i.e:
• the composition of two continuous functions is continuous;
• ωCPOs are closed under Cartesian products, i.e., given two ωCPOs P and Q, P ×Q
is also an ωCPO; and
• continuous functions between two ωCPOs also form an ωCPO. The order is the
pointwise order.

4.2 Quasi-Borel Spaces
In PλωNK we give semantics to higher-order functions and probabilistic choice. For this
reason we need a semantic domain which is both Cartesian closed and admits a probabilistic
power domain. As we mentioned previously, we cannot rely on measure theory, the usual
choice for probabilistic domains, since it is not Cartesian closed. Instead, we use Quasi-Borel
Spaces(QBS) [Heunen et al. 2017], which are Cartesian closed.
However, in order to define QBSes, we must revisit some basic definitions from measure

theory first. We limit the treatment of measure theory to the essentials needed to understand
Quasi-Borel Spaces. For instance, we do not discuss general measure spaces, but constrain
ourselves to a particular set of measurable sets on the reals, the Borel sets:

Definition 4.5. The Borel sets B are the least collection of subsets of R, such that:
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• the intervals [a, b] are Borel sets for a, b ∈ R,
• the complement of a Borel set is a Borel set, and
• countable unions of Borel sets are Borel sets.

A probability measure is a function µ : B→ [0, 1] satisfying µ(R) = 1 and µ(
⋃
Sn) =

∑
µ(Un),

for any countable sequence of disjoint Borel sets (Sn)n∈N. A function f : R→ R is called
measurable if its inverse image maps Borel sets to Borel sets. Symbolically, for all B ∈ B:

f−1(B) = {x ∈ R | f(x) ∈ B} ∈ B.

Such functions can be integrated with respect to a measure. For a non-negative real-valued
measurable function f : R→ R, the integral of f with respect to a probability measure µ is
defined as: ∫

f dµ = sup
(Un)

∑
n

(
µ(Un) inf

x∈Un

f(x)

)
where (Un) ranges over finite partitionings of R into Borel sets. If f is allowed to be negative,
its integral is: ∫

f dµ =

∫
f+ dµ−

∫
f− dµ

where f+ = max(f, 0), f− = max(−f, 0).
Measure theory generalises Borel sets to the measurable subsets of a measurable space

X, and generalises measurable functions on R to measurable functions between measurable
spaces, whose inverse image always maps measurable sets to measurable sets.

Quasi-Borel Spaces [Heunen et al. 2017] are an alternative to measure theory, starting
from the from the notion of a random element R→ X instead of measurable sets.

Definition 4.6. A Quasi-Borel Space (QBS) 〈X,MX〉 is a set X together with a set of
functions MX such that the following conditions are met:
• If α : R→ X is constant, then α ∈MX ;
• if α ∈MX , and f : R→ R is measurable, then α ◦ f ∈MX ;
• let R =

⋃
n∈N Un where the Un are pairwise disjoint Borel sets, if αn ∈ MX for all

n ∈ N, then β ∈MX where β(r) = αn(r) if r ∈ Un.

Essentially, MX must contain all constant functions, and must be closed under pre-
composition with a measurable function or countable case-splitting. A function f : X → Y
is a morphism from 〈X,MX〉 to 〈Y,MY 〉 if for all α ∈MX , f ◦ α ∈MY .

There are two canonical ways to turn a set X into a QBS. One option is to simply include
all functions R→ X in MX . Another option is to take as random elements all measurably
piece-wise constant functions, i.e., those functions from R to X that are piece-wise constant
on measurable sets of R.
The quasi-Borel spaces together with their morphisms form a category. Moreover, this

category admits products, co-products and function spaces. That is, unlike the category
formed by measurable spaces and measurable functions between them, this category is
Cartesian closed [Heunen et al. 2017, Proposition 18].

4.3 ω-Quasi-Borel Spaces
Definition 4.7. An ω-Quasi-Borel Space is a triple 〈X,MX ,vX〉 such that:
• 〈X,MX〉 is a quasi-Borel Space,
• 〈X,vX〉 is an ωCPO, and
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•
(∨

n≥0 αn

)
∈ MX for all ω-chains α0 � α1 � · · · (with αn ∈ MX), where � is the

point-wise order on MX .

Informally, an ωQBS is a QBS that is also an ωCPO, and whose random elements are
closed under pointwise lubs of ω-chains.
The morphisms between ωQBSes are those morphisms between the underlying ωQBSes,

which are also Scott-continuous between the underlying ωCPOs.
We reiterate two examples from Vákár et al. [2019]:

Example 4.8. Real values have the ωQBS, 〈R,MR,=〉, with MR the set of measurable
functions from R to R. Alternatively, consider W = 〈[0,∞],MW, <〉 the space of weights,
where MW is the set of measurable functions from R to [0,∞].

Just like QBS, ωQBS forms a category that is closed under products, co-products and
exponentials (functions). This category is Cartesian closed. With ωQBSes we finally have a
mathematical concept which unifies iteration, probabilistic choice and higher-order functions.

4.4 A Commutative Probabilistic Powerdomain
The denotational semantics we give to PλωNK is a monadic semantics: it allows the struc-
turing of the semantics in a compositional fashion [Moggi 1991]. This section explains how
to define a monad suitable for expressing probabilistic computations as an ωQBS.
The idea, as explained by Vákár et al. [2019], is to treat distributions as expectation or

integration operators. The distribution monad D(X) is (a submonad8 of) the continuation
monad C(X) = (X →W)→W, where the arrows (→) denote ωQBS morphisms. The idea
is that for a µ ∈ C(X) and f : X →W, µ(f) computes the integral of f with respect to µ,
in more traditional notation, µ(f) =

∫
f dµ.

The unit (return) and composition (>>=) of this monad are given by:

return x = λk → k x m>>= f = λk → m (λx→ f x k)

In more traditional language these represent integrating with δx (Dirac-delta of x) and the
integral

∫
x

∫
k d(f x) dm, respectively. The details of this construction are beyond the scope

of this article. The most important results are:
• This construction satisfies the requirements of synthetic measure theory, implying that
the results of measure theory continue to hold in this new setting. In particular, we
can do addition and scalar multiplication of distributions.
• The monad consists of the s-finite measures and kernels, meaning that the monad is
commutative: operations can be re-ordered [Staton 2017].

5 DENOTATIONAL SEMANTICS
A denotational semantics maps terms (values and computations) into a semantic domain. A
term’s domain is determined by its type, therefore, we must foremost discuss the semantics
of types.

5.1 Semantics of Types
Figure 4 shows the interpretations of the different types. Each type denotes an ωQBS, which
we denote by just the underlying set X instead of the full triple 〈X,MX ,vX〉.

8Specifically, it is the smallest ωQBS that is a full sub-ωCPO of C(X) and contains the randomisable random
elements.
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J1K = 〈{()},M(), (=)〉
JHK = 〈Headers,MHeaders , (=)〉
JNK = 〈N,MN, (=)〉

JT T K = JT K

JS → T K = 2PH → D(JT KJSK ⇀ 2PH )

JP SK = 2PH → D(JSK ⇀ 2PH )

A ⇀ B = A→ B⊥

Fig. 4. Denotations of types and contexts.

Unit types 1 are denoted by nullary products, whose only inhabitant is written as ().
Header types H are denoted by the finite set of header labels and header literals N are
denoted by the natural numbers. In these three cases, the underlying ωCPO is given by the
discrete order (=)9 and the underlying ωQBS can be created using either of the canonical
methods described in Section 4.2. Thunk types simply denote the denotation of the thunked
computation type.
Computation types need to capture the side effects: state, parallelism, and probabilistic

choice. The denotations of both sorts of computation types are of a similar form:

input state︷︸︸︷
2PH → D(X ⇀

output state︷︸︸︷
2PH︸ ︷︷ ︸

parallel value and state
)

where D is the distribution monad defined in Section 4.4, the arrow (→) denotes ωQBS-
morphism and the harpoon (⇀) denotes partial maps. Partial maps f : A ⇀ B are equivalent
to total functions f̂ : A→ B⊥, where B⊥ is B extended with a distinguished element, ⊥B ,
preceding all other elements. For any a ∈ A, f̂(a) = ⊥B then means that f is undefined on a.
Hence, the domain dom(f) of a partial map f is defined as dom(f) = {x | f̂(x) 6= ⊥}. The
partial maps are not required to be continuous (but they do form an ωCPO and an ωQBS).
Note that we use the power set of packet histories to represent the state. The ωQBS of

this powerset is 〈2PH ,M2PH ,⊆〉 where M2PH are the random elements of the exponential
2PH of 〈2,M2,=〉 and 〈PH ,MPH ,=〉.

We use partial maps X ⇀ 2PH to model parallelism in both the value (X) and the state
(2PH ). The idea is that a particular value comes with a particular state. Since the map is
partial, not all values are necessarily present. Note that we cannot use total maps and the
empty set to indicate the absence of a value, since the empty set is a valid state.
For producer types P S, X = JSK. For function types S → T , X = JT KJSK, i.e., the

morphisms (functions) from JSK to JT K.
Finally, the semantics JSK extends naturally to an interpretation on contexts (recall that

contexts only contain value types):

Jx1 : S1, . . . , xk : SkK = JS1K× · · · × JSkK

9In this order, everything is incomparable to everything, unless they are the same element.
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That is, contexts are denoted by the product of the denotations of the types within the
context. For convenience, however, for an environment ρ ∈ JΓK, we will write ρ(x) to look
up a variable x, and [x 7→ v]ρ to update the value of x in ρ.

5.2 Semantics of Terms
Next, we define denotational semantics for terms (Figure 5). The semantics are divided
into three (mutually recursive) categories: semantics for values, for predicates and for other
computations. All semantic functions take an environment ρ ∈ JΓK as their first argument.
Predicates and computations also take a set of packet histories A ∈ 2PH .

5.2.1 Values. For values, the semantics is relatively straightforward: variables can be looked
up in the environment ρ. The units, headers and literals map to their corresponding constants.
A thunk thunk C partially applies the denotation of C to the current environment ρ. Recall
that JCK ρ is a function that expects a set of packet histories. When the thunk is forced this
function is applied to the current state. To see why this makes sense, consider that it is the
location where the thunk is created that determines the scope of the variables in C, but it is
the location where it is forced which determines its state.

5.2.2 Predicates. Predicates filter sets of packet histories, that is, they allow or reject
particular packet histories.

Predicates skip and drop allow, respectively disallow, all packet histories. A guard V1 = V2
only allows packet histories where the first packet’s header JV1K ρ has the specified value
JV2K ρ (accessing header f of a packet π is written as π.f). Negation (¬) only retains packets
that are dropped by its argument. Finally, conjunction (∧) and disjunction (∨) take the
intersection and union respectively.

5.2.3 Computations. The semantics for computations returns values in the monad D. Since
D is a monad, we use the well-understood do-notation to construct monadic expressions,
de-sugaring straightforwardly to monadic bind (>>=).
The first three cases are non-probabilistic. Moreover, they all produce the unit value (),

they return a map from () to a modified set of histories.10 Predicates P filter packet histories
according to the predicate semantics JP Kp ρ A. Modifications change the first packet’s header
for every packet history in the input set (setting a packet π’s header f to x is written
π[f 7→ x]). Similarly, dup duplicates the first packet.
Sequential composition (C1 ;C2) first evaluates C1, and then C2 (returning the value of

C2). Since the evaluation of C2 does not depend on the value of C1, all packet histories of
C1 are simply aggregated and passed to C2.

Parallel composition C1 &C2 combines the results (values and states) of both computations.
Since the results of C1 and C2 are captured by the partial maps µ1 and µ2, it must combine
these maps. The pointwise lub µ1

∨
µ2 is exactly what is needed: the domain of the lub is

the union of the domains of µ1 and µ2, so it has all the values of both computations, and
the sets of packet histories it maps a value x onto is the union of µ1(x) and µ2(x).
Choice C1 ⊕p C2, reweighs both C1 and C2, by p and 1 − p respectively, and adds the

resulting distributions. Note that the sum is a probability distribution, i.e. all weights sum
to one. Since D satisfies the requirements of synthetic measure theory, scalar multiplication
and addition behave as one would intuitively expect, multiplying and adding probabilities.

10By convention, λ with an arrow (→) is abstraction in the meta-language (morphisms in ωQBS) and λ

with dot . refers to abstraction in the object language.
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Values
JV K : JΓK → JSK
for Γ `v V :S

JxK ρ = ρ(x)

JunitK ρ = ()

JhiK ρ = hi

JiK ρ = i

Jthunk CK ρ = JCK ρ

Predicates JP Kp : JΓK→ 2PH → 2PH for Γ `c P :P 1

JskipKp ρ A = A

JdropKp ρ A = ∅
JV1 = V2Kp ρ A = {π ::h ∈ A | π.(JV1K ρ) = JV2K ρ}

J¬P Kp ρ A = A− JP Kp ρ A
JP1 ∧ P2Kp ρ A = JP1Kp ρ A ∩ JP2Kp ρ A
JP1 ∨ P2Kp ρ A = JP1Kp ρ A ∪ JP2Kp ρ A

Computations JCK : JΓK→ JT K for Γ `c C :T

JP K ρ A = return (λ()→ JP Kp ρ A)

JV1 ← V2K ρ A = let f = JV1K ρ, j = JV2K ρ
in return (λ()→ {π[f 7→ j] ::h | π ::h ∈ A})

JdupK ρ A = return (λ()→ {π ::π ::h | π ::h ∈ A})
JC1 ;C2K ρ A = do µ← JC1K ρ A

JC2K ρ
(⋃

x∈dom(µ) µ(x)
)

JC1 &C2K ρ A = do µ1 ← JC1K ρ A
µ2 ← JC2K ρ A
return (µ1

∨
µ2)

JC1 ⊕r C2K ρ A = r(JC1K ρ A) + (1− r)(JC2K ρ A)

JC∗K ρ A =
⊔

n≥0 (JC
nK ρ A) where

C0 = skip,
Cn+1 = skip&(C ;Ci), n ≥ 0

Jproduce V K ρ A = return (λ(JV K ρ)→ A)

Jforce V K ρ A = JV K ρ A
Jλx :S.CK ρ A = return (λ(λv → JCK ([x 7→ v]ρ) )→ A)

JC V K ρ A = do µ← JCK ρ A
Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}

JC1 to x.C2K ρ A = do µ← JC1K ρ A
Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}

where Ξ{m1, . . . ,mk} = do µ1 ← m1

...
µk ← mk

return (µ1

∨
· · ·

∨
µk)

Note: X → Y means ωQBS-morphisms from X to Y .

Fig. 5. Denotations of terms.
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Iteration (Kleene-star C∗) is defined as it is for PNK, using least fixed-point semantics. It
can be understood as the least fixed-point of the function

(
>>=λµ→ Jskip&CK ρ µ(())

)
.

Or, operationally, we simply take the least upper bound of iterating C for 0, 1, . . . times.
This definition is identical to Smolka et al.’s [2017b], although on a different ωCPO. Treating
probabilistic loops as fixed-points goes at least as far back as Kozen’s [1981] early work on
probabilistic program semantics.
To produce (produce V ) a value V , we return the map from JV K ρ to the current set of

packet histories A. Here we use the notation λ(JV K ρ)→ A to define the map that is A on
JV K ρ and ⊥ everywhere else.
Thunks are forced by evaluating their semantics, and then applying the result of that

semantics to the input set of packet histories. Recall that the semantics of a thunk corresponds
to a partially applied semantics of the thunked computation.
For an abstraction λx : S.C we construct a map with a domain containing only one

particular anonymous function in the meta-language. This function takes a v ∈ JSK, extends
the environment ρ with v, and runs JCK in this new environment.
For application, we must first sample from the computation C. This produces a map

from JSK → JT K to sets of packet histories. Each unique function f in the map µ is then
applied to the argument JV K ρ and the corresponding set of packet histories µ(f). Every
unique function f corresponds to one or more parallel branches that produce this value,
µ(f) aggregates the states of each of those branches. This produces a set of distributions,
which we can collapse using the Ξ operator (also defined in Figure 5). This operator samples
from each distribution, and takes the lub of the resulting maps.

Sequencing (C1 to x.C2) is similar to application. We sample a map µ from C1. As with
application, there is only a finite number of distinct values v in dom(µ). For each unique v,
we extend ρ, and evaluate JC2K [x 7→ v]ρ µ(v), producing a finite set of distributions, which
we flatten with Ξ.

The use of Ξ is well-defined by the following lemma:

Lemma 5.1 (Lubs of finite sets). Let {m1, . . . ,mn} ⊆ JT K for some type T , then
Ξ{m1, . . . ,mn} is the least upper bound of {m1, . . . ,mn}.

The proof is a straightforward induction on the size of the set. Because Ξ computes the
least upper bound, it is independent of the order of {m1, . . . ,mn}. However, it assumes
that the input set is finite, i.e., that there are only finitely many unique functions f . This
assumption is discharged by Theorem 5.2 (see Section 5.3).
A further theorem (Theorem 5.5) makes the semantics well-defined. In particular, it

ensures that the least upper bound in the definition of iteration exists and that the types
ascribed to the denotations in Figure 5 are valid. The next sections discuss each theorem in
turn. The proofs of these theorems can be found in Appendix ??.

5.3 Finite Maps
The function Ξ is only defined for finite sets. Therefore, we must verify that this function is
only ever applied to a finite set. Informally, this is the case if we ensure that in Figure 5, µ
is only bound to maps that have a finite domain. More formally, we desire the following:

Theorem 5.2 (Finite Maps). For all computations C, such that Γ `c C :T , ρ ∈ JΓK and
A ∈ 2PH , we have that for any ωQBS morphism f : X → R, where JT K = 2PH → D(X):∫

X

f d(JCK ρ A) =
∫
X

χF f d(JCK ρ A)
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where F = {g ∈ X | dom(g) is finite}, and χF : X → {0, 1} is its characteristic function.

To prove this theorem we rely on logical relations [Tait 1967] FS to define a stronger
theorem (Theorem 5.4). The actual logical relations are FS and FT , defined as follows:

Definition 5.3. The predicates FS and FT where S and T are value, respectively compu-
tations types, are defined inductively as:

FS =

{
JSK if S 6= T T
FT if S = T T

FT =

{
f ∈ JT K

∣∣∣∣ ∀g ∈ G(T ),∀A ∈ 2PH :

∫
g d(f(A)) =

∫
χF (T ) g d(f(A))

}
where

F (P S) = {µ : FS ⇀ 2PH | dom(µ) is finite}
F (S → T ) = {µ : (FS → FT )⇀ 2PH | dom(µ) is finite}

G(P S) = (JSK ⇀ 2PH )→ R

G(S → T ) = ((JSK→ JT K)⇀ 2PH )→ R

The idea of these logical relations is to restrict the denotations to those semantic objects
where all partial maps have a finite domain. For instance, the denotation of non-thunk
values never contains a map, hence FS is simply JSK in this case. Thunked computations
can contain computations, thus we restrict them to FT .
In a somewhat roundabout fashion, FT says that the denotations of a computation of

type T must only contain finite maps. In particular, it says that integrating any g with
respect to f(A) should be the same as integrating χF (T ) g with respect to f(A), where F (T )
only contains the finite maps of the appropriate type.11 In other words, integrating while
filtering out the infinite maps should not make a difference at all, meaning that the only
maps that are present are finite. The following theorem, of which Theorem 5.2 is a corollary,
states that every well-typed term’s denotation is a member of the appropriate relation:

Theorem 5.4. For all values V and computations C,

if Γ `v V :S and Γ `c C :T , then JV K ρ ∈ FS and JCK ρ ∈ FT

where ρ ∈ JΓK such that if x : Sx ∈ Γ, then ρ(x) ∈ FSx
.

Proof. (sketch) By induction on the structure of the typing derivation, performing case
analysis on the final rule application. The proof uses an equational reasoning style. �

5.4 Continuity
Continuity is a property that intuitively means that a function preserves the least upper
bounds of the domain it operates on. In other words, it preserves the ωCPO structure. This
is a technical requirement to ensure that the least-upper bound of the semantics of iteration
exists. More formally, we desire the following property:

11The juxtaposition χF (T ) g means pointwise multiplication.
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Theorem 5.5 (Continuity). For all computations C, such that Γ `c C : T , for all
ρ ∈ JΓK, JCK ρ A is continuous in A ∈ 2PH , i.e. JCK ρ A is monotone, and for all
A1 ⊆ A2 ⊆ . . . ⊆ PH : ⊔

i≥1

(JCK ρ Ai) = JCK ρ
( ⋃
i≥1

Ai

)
To prove this theorem, we define the following logical relation:

Definition 5.6. The predicates CS and CT where S and T are value, respectively computa-
tions types, are defined inductively as:

CS =

{
JSK if S 6= T T
CT if S = T T

CT =

{
f ∈ JT K

∣∣∣∣ f is continuous, and
∀g ∈ G(T ),∀A ∈ 2PH :

∫
g d(f(A)) =

∫
χC(T ) g d(f(A))

}
where

C(P S) = {µ : CS ⇀ 2PH }
C(S → T ) = {µ : (CS → CT )⇀ 2PH }

G(P S) = (JSK ⇀ 2PH )→ R

G(S → T ) = ((JSK→ JT K)⇀ 2PH )→ R

Similar to Section 5.3 the idea is to restrict the denotations to those semantics objects
that are continuous (in the input set—not the environment), and for those partial maps
that have a function domain, the domain only contains continuous functions. Note that we
do not require that the partial maps themselves are continuous. Indeed, this is clearly not
the case (e.g. in the case of produce V and λx :S.C). The denotations for non-thunk values
do not contain input sets or maps, hence CS is simply JSK. Thunked computations contain
computations, thus CT T = CT . For computations of type T , CT says that the semantics itself
must be continuous, and any element of a partial map’s domain must be continuous.

We prove the following theorem, of which Theorem 5.5 is a direct consequence:

Theorem 5.7. For all values V and computations C:

if Γ `v V :S and Γ `c C :T , then JV K ρ ∈ CS and JCK ρ ∈ CT

where ρ ∈ JΓK such that if x : Sx ∈ Γ, then ρ(x) ∈ CSx
.

5.5 Conservativity
The next theorem relates the semantics to the original PNK semantics, showing that our
semantics behaves identical to the original PNK semantics on probabilistic computations.

Theorem 5.8 (Conservativity). Let C be a closed probabilistic computation, and let
JCKPNK be the denotation of C in the probabilistic PNK semantics [Smolka et al. 2017b],
re-translated into ωQBS (see Appendix ??), then for all A ∈ 2PH :

JCKPNK A = JCK () A>>=λµ→ return (µ(()))
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Summary. We have a well-defined denotational semantics for PλωNK. This semantics
is a conservative extension of PNK’s semantics. However, it is not clear how to compute
this semantics. Recall that application C V applies every unique f ∈ dom(µ) exactly once,
in parallel. Because parallel composition is not idempotent [Foster et al. 2016], duplicate
applications are not innocent. The situation for sequencing is analogous. To the best of our
knowledge, there is no decidable procedure for this uniqueness problem. We could follow
Smolka et al. [2017a, 2019] and remove dup, making the state-space finite and discrete.
Although a perfectly valid solution, we believe that this restricts the properties we can model
in our language too much (e.g., modelling latency is not possible). Instead, we restrict the
type of parallel composition to P 1, to ensure that dom(µ) contains a single element. This
enables the compilation of closed PλωNK terms into PNK. The program is then approximated
with PNK’s approximation procedure. We discuss this approach in detail in Section 6.

6 COMPILATION TO PNK
Let us make precise the restriction referred to in the previous section. We replace the
judgements Γ `v V :S and Γ `c C :T with Γ 
v V :S and Γ 
c C :T . The rules for these
judgements are analogous to the original rules, except that we replace

Γ `c C1 :T Γ `c C2 :T

Γ `c C1 &C2 :T
with

Γ 
c C1 :P 1 Γ 
c C2 :P 1
Γ 
c C1 &C2 :P 1

The new rule restricts the type of parallel composition to P 1. In other words, the value of
& is completely predictable: it must be unit . Furthermore, parallelism is the only way to
grow the domain of the finite maps. Thus, all domains are now either a single function, or a
single value. From a different perspective, we have just restricted the parallelism of PλωNK
to the parallelism present in PNK.

6.1 Elaboration
We only compile closed computations of type P 1. This is reasonable because complete PλωNK
models are not functions and have no free variables. Initially, we only deal with terminal
computations (Section 3.1). By case analysis on the typing judgement, such computations
are either produce unit or probabilistic computations (i.e. only consist of PNK terms). The
following relation elaborates these computations into PNK:

Definition 6.1 (Elaboration). Define R R as:
P  P

V ← V  V ← V
dup  dup

R1 ;R2  E1 ;E2 if R1  E1 and R2  E2

R1 &R2  E1 &E2 if R1  E1 and R2  E2

R1 ⊕R2  E1 ⊕ E2 if R1  E1 and R2  E2

R∗  E∗ if R E
produce V  skip
λx :S.C  skip

Elaboration preserves the semantics of a closed term of type P 1:

Theorem 6.2 (Soundness of Elaboration). Let R1, R2 be terminals such that

c R1 :P 1, 
c R2 :P 1 and R1  R2, then JR1K = JR2K .

Moreover, the elaboration always exists for closed terms of the right type:
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C ⇓ R

P ⇓ P F ← N ⇓ F ← N dup ⇓ dup produce V ⇓ produce V

λx :S.C ⇓ λx :S.C
C1 ⇓ R1 C2 ⇓ R2

C1 ;C2 ⇓ R1 ;R2

C1 ⇓ R1 C2 ⇓ R2

C1 &C2 ⇓ R1 &R2

C1 ⇓ R1 C2 ⇓ R2

C1 ⊕ C2 ⇓ R1 ⊕R2

C ⇓ R
C∗ ⇓ R∗

C ⇓ R
force (thunk C) ⇓ R

C1 ⇓ λx :S.C11 [x 7→ V ]C11 ⇓ R
C1V ⇓ R

C1 ⇓ R11 ;R12 R12 V ⇓ R2

C1 V ⇓ R11 ;R2

C1 ⇓ produce V [x 7→ V ]C2 ⇓ R
C1 to x.C2 ⇓ R

C1 ⇓ R11 ⊕R12 R11 V ⇓ R1 R12 V ⇓ R2

C1 V ⇓ R1 ⊕R2

C1 ⇓ P [x 7→ unit ]C2 ⇓ R
C1 to x.C2 ⇓ P ;R

C1 ⇓ F ← N [x 7→ unit ]C2 ⇓ R
C1 to x.C2 ⇓ F ← N ;R

C1 ⇓ dup [x 7→ unit ]C2 ⇓ R
C1 to x.C2 ⇓ dup ;R

C1 ⇓ R11
∗ [x 7→ unit ]C2 ⇓ R2

C1 to x.C2 ⇓ R11
∗ ;R2

C1 ⇓ R11 ;R12 R12 to x.C2 ⇓ R2

C1 to x.C2 ⇓ R11 ;R2

C1 ⇓ R11 &R12 [x 7→ unit ]C2 ⇓ R2

C1 to x.C2 ⇓ (R21 &R22) ;R2

C1 ⇓ R11 ⊕R12 R11 to x.C2 ⇓ R21 R12 to x.C2 ⇓ R22

C1 to x.C2 ⇓ R21 ⊕R22

Fig. 6. Rules for reduction from PλωNK to PNK.

XTheorem 6.3 (Completeness of Elaboration). Let R be a terminal, then there
exists precisely one probabilistic E such that R E.

6.2 Reduction
Converting a closed terminal into a PNK program is only half the battle. The other half is
performed by the bigstep relation C ⇓ R given in Figure 6. It reduces a computation to a
terminal. We can make the following observations about the bigstep relation:
• Atomic computations simply reduce to themselves.
• Compound computations built with PNK operations (sequential and parallel com-
position, probabilistic choice and iteration) are reduced to the reduction of their
subcomputations.
• Forcing a thunk reduces to the reduct of the thunked computation.
• Application of a lambda substitues the value into the body of the lambda. When the
first argument reduces to sequential composition or probabilistic choice, the application
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distributes over this argument. This is not possible for parallel composition, since it is
not distributive [Foster et al. 2016].
• When C1 reduces to produce V , sequencing (C1 to x.C2) substitutes V for x in C2,
reducing the result of the substitution. When the first argument instead reduces to
a predicate, a modification, a duplication, parallel composition or an iteration, C1

always reduces to a terminal of type P 1. Hence, we substitute unit for V in these cases.
When the first argument reduces to sequential composition composition or probabilistic
choice, sequencing, like application also distributes over this argument. Finally, if the
first argument reduces to parallel composition, we know that the value it produces
must be unit, and so we can always substitute unit for x.

To be clear, our compilation strategy is as follows: (1) Reduce a PλωNK computation to a
terminal, and (2) elaborate the remaining terminal into PNK.
To ensure that our compilation delivers correct results, it remains to show that step (1)

terminates, and that this step is sound. Soundness means that the denotational semantics of
the program is preserved. It is expressed by the following theorem:

Theorem 6.4 (Soundness of Reduction). Let C,R be computations, if Γ 
c C :T
and C ⇓ R then JCK = JRK.

Termination is our subsequent concern. It follows from strong normalisation of the
reduction relation, a property of the meta-theory of reduction, discussed in the next section.

6.3 Meta-theory of Reduction
The reduction relation obeys the standard type-preservation theorems, and in addition, is
strongly normalising. In detail, terminals are reduced to themselves (Theorem 6.5). Moreover,
all reductions result in terminals (by definition), in a deterministic fashion (Theorem 6.6)
and preserve types (Theorem 6.7). Finally, reduction is strongly normalising (Theorem 6.8).

XTheorem 6.5 (Reflection). Let R be a terminal, then R ⇓ R.

XTheorem 6.6 (Determinacy). Let C,R1, R2 be computations, if C ⇓ R1 and C ⇓ R2,
then R1 = R2.

XTheorem 6.7 (Preservation). Let C,R be computations, if Γ 
c C :T and C ⇓ R,
then Γ `c R :T . Conversely, if Γ 
c C :T1, Γ 
c R :T2 and C ⇓ R, then T1 = T2.

XTheorem 6.8 (Strong Normalisation). Let C be a computation such that 
c C :T
for some computation type T, then there exists a terminal R such that C ⇓ R.

In addition to the theorems shown here, PλωNK also satisfies additional inversion and
substitution lemmas that are instrumental in proving these theorems.

The meta-theory discussed in this section has been mechanised with the aid of the Abella
proof-assistant [Gacek 2008]. The proofs for these theorems proceed by induction either
on the structure of terminals or the structure of the bigstep relation. Each of proof has
many cases that need to be checked. By using a theorem prover, we ensure that no cases or
conditions are forgotten.
The most involved proof is Strong Normalisation, which requires a logical-relation style

proof technique [Tait 1967]. This particular proof was inspired by the standard proof of
strong normalisation of CBPV, described in Levy’s thesis [2001].

The definition of the logical relations are shown in Figure 7. In essence, we need to define
three mutually-recursive type-indexed logical relations: one for values (V[S]), one for closed
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V[1] = {unit} V[H] = Headers V[N] = N V[T T ] = {thunk C | C ∈ C[T ]}

R ∈ T[P 1] iff 
c R :P 1 where R is atomic
R∗ ∈ T[P 1] iff R ∈ T[P 1] and 
c R

∗ :P 1
produce V ∈ T[P S] iff V ∈ V[S] and 
c produce V :P S

R1 ;R2 ∈ T[P S] iff ∃T ′ : R1 ∈ T[T ′] and R2 ∈ T[P S] and 
c R1 ;R2 :P S
R1 &R2 ∈ T[P S] iff R1, R2 ∈ T[P S] and 
c R1 &R2 :P S
R1 ⊕R2 ∈ T[P S] iff R1, R2 ∈ T[P S] and 
c R1 ⊕R2 :P S

R ∈ T[S → T ] iff R is terminal and 
c R :S → T and ∀V ∈ V[S] : (R V ) ∈ C[T ]

C ∈ C[T ] iff 
c C :T and ∃R ∈ T[T ] : C ⇓ R

Fig. 7. Logical relations involved in proving Strong Normalisation

terminal computations (T[T ]) and one for all computations, terminal or non-terminal (C[T ]).
The idea is that those relations contain only closed computations for which the bigstep
relation ⇓ terminates. For values, it contains all closed non-thunk values, and only closed
thunks of terminating computations. Additionally, computations of function type must
preserve termination when applied to terminating values.

Compared to Levy’s logical relations, our logical relation does not contain product or sum
types. In our proof we leverage standard Abella techniques to prove theorems with logical
relations, which requires defining and proving substitution lemmas for every syntactic form.
Moreover, we also need to show additional preservation lemmas for sequential and parallel
composition, and for probabilistic choice.
The proof of strong normalisation, together with the definitions of the logical relations

and supporting lemmas amounts to a little under 800 lines of Abella code (roughly 1500
LOC in total).

6.4 Discussion
We have identified a class of PλωNK programs that can be safely compiled to PNK. In
particular, the class consists of computations C such that 
c C :P 1, i.e., those programs
that do not use parallelism beyond what is present in PNK. It should be possible to ease
this restriction slightly. For instance, unlike functions, we can distinguish between distinct
headers and literals. This leads to only finitely many cases, which could be encoded explicitly
into PNK.

Once a program has been compiled, it can be approximated in PNK. The approximation
proceeds by expanding iterations in the program up to n times, for finite n. More iterations
improve the accuracy of the results [Smolka et al. 2017b].

7 RELATED WORK
Software Defined Networks. Software Defined Networks (SDN) [Foster et al. 2013] aim

to decrease the complexity of the modern computer networking environment, by offering a
clean open interface between heterogeneous networking devices (e.g. routers, switches and
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firewalls). This is accomplished through the OpenFlow12 protocol. Unfortunately, this is a
rather low-level protocol making it inconvenient to program hardware in OpenFlow directly.

The aim of the Frenetic project [Reich et al. 2013] is to design the right high-level abstrac-
tions for controlling OpenFlow hardware. NetKAT [Anderson et al. 2014] and PNK [Foster
et al. 2016] were developed under this project. Some preliminary case studies were performed
with PNK, modelling the behaviour of several traffic engineering approaches. The effort
involved in these case studies was not reported. Interestingly, the few samples of code that
were provided seem to use features (e.g. finite iterations, variables), that are not part of the
formalised fragment of PNK, but could be implemented fully within PλωNK.

Probabilistic Programming. The goal of probabilistic programming [Goodman 2013] can
be captured by the following equation:

PPL = MODELLING LANGUAGE + INFERENCE ALGORITHM

That is, probabilistic programming’s goal is to unify probabilistic modelling and general
purpose programming: probabilistic models are written in the language, and the probabilities
are inferred using a generic inference algorithm.
Stan [Carpenter et al. 2017] is a very popular statistical modelling language, with bind-

ings to R, Python, MATLAB, Julia and several others. More recently, languages such as
Gen [Cusumano-Towner et al. 2019] and Turing [Ge et al. 2018] have started to make the
inference algorithms programmable, in addition to the model, since fine-tuning the inference
can lead to large performance gains.
Probabilistic Programming has been applied to such diverse problems as 3D body pose

estimation from depth data [Cusumano-Towner et al. 2019], genetics [De Maeyer et al. 2013]
and Automatic Video Montage [Aerts et al. 2016].
Functional PPLs such as Anglican [Wood et al. 2014], Venture [Lu 2016], or Gen [Lu

2016], allow distributions over higher-order functions. However, unlike this work, they do
not formalise the semantics of higher-order functions, focusing instead on language design
and implementation, and inference. The work on quasi-Borel Spaces is at least partially
motivated by the unfilled need for a theoretical foundation for these languages [Heunen et al.
2017]. Quasi-Borel Spaces have been used by Scibior et al. [2018] to verify the correctness of
modular Bayesian inference algorithms.

Probabilistic powerdomains have been extensively investigated (see e.g., Bacci et al. [2018];
Battenfeld et al. [2007]; Goubault-Larrecq and Varacca [2011]; Jones and Plotkin [1989];
Jung and Tix [1998]; Saheb-Djahromi [1980]). Nevertheless, until the work of Vákár et al.
[2019], a convenient continuous probabilistic powerdomain that supports iteration and is
commutative proved elusive. However, the ω-quasi Borel Spaces are not the only approach
to this problem, as we remark in the the next paragraph.

Probabilistic Call-By-Push-Value. Although PλωNK does not model CBPV exactly, it was
heavily inspired by it. CBPV was developed by Levy [2001] as a paradigm that subsumes
both CBV and CBN. Since then, Ehrhard and Tasson [2019] have developed a probabilistic
CBPV calculus. A technical difference is that they give a semantics in terms of probabilistic
coherence spaces [Danos and Ehrhard 2011], whereas we use a monadic semantics based on
ωQBSes.

Goubault-Larrecq [2019] cleverly side-steps the issue of providing a commutative statistical
higher-order powerdomain, by giving a semantics for CBPV that interprets value types and

12https://www.opennetworking.org/
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computation types differently. The values are interpreted in a category which is closed under
the powerdomain functor, and the computations are interpreted as DCPOs. His language
also has demonic non-determinism, statistical termination testers and parallel if statements.

A crucial difference with our work is that monadic state is not present in either calculus,
while it is in ours. This significantly complicates our denotational semantics, in particular for
application and sequencing. Moreover, these calculi do observe the isomorphism mentioned
in Section 5.1. A detailed investigation into the relationships between these calculi and our
language is reserved for future work.

8 CONCLUSIONS AND FUTURE WORK
In future work, we intend to quantitatively evaluate the impact PλωNK, by re-implementing
the existing PNK case-studies, and study the improvements in terms of readability and
maintainability.

To support this quantitative study, we need to further develop and optimise our prototype.
We believe that performance can be improved by incorporating techniques such as knowledge
compilation [Kisa et al. 2014; Smolka et al. 2015] and defunctionalisation [Danvy and Nielsen
2001; Reynolds 1998].

Furthermore, our work contains a significant amount of paper proofs. These proofs are
inductive proofs, using equational reasoning and logical relations, which should not be too
difficult to mechanise. However, the requisite background theory, i.e., (ω-)Quasi-Borel Spaces,
has to be mechanised first.
Lastly, we are investigating reformulations of PλωNK for other paradigms such as true

CBPV and Fine-Grained CBV [Levy 2001, App. A.3]. The key difference appears to be that
function typed terms should only evaluate their side-effects when applied to a value.

Conclusion. In this article we presented PλωNK, a functional network modelling language
that combines state, parallelism and probabilistic choice. Because it combines higher-order
functions and probability, we cannot give it a purely measure-theoretic semantics. Instead, we
leverage ω-Quasi Borel Spaces to define our denotational semantics. We also define a strongly
normalising type system for PλωNK. Since the main purpose of PλωNK is verification, the
additional flexibility of general recursion is not required. Indeed, strong normalisation is
necessary to make our semantics well-defined. Moreover, we develop a procedure to compile
programs in our language to the simpler language Probabilistic NetKAT, given small type
restrictions.
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A ATOMIC COMPUTATIONS
The denotational semantics predicates, modifications and duplications all share a very similar
structure. Essentially, they immediately return a partial map from the unit value to a set,
that is somehow a transformation of the input set. We call these atomic computations
(see Smolka et al. [2017b]).

This property is very helpful, since, for the purpose of proving properties about their
denotational semantics, atomic computations can be treated uniformly.
To make this more precise, we first define how individual elements of the input set are

transformed. For predicates, there is a boolean function BP that decides if an element of
the input is retained in the output:

Definition A.1. Let P be a predicate such that Γ `c P :P 1, then BP : JΓK→ PH → {0, 1}
is defined as:

Bskip ρ x = 1

Bdrop ρ x = 0

BV1=V2 ρ (π :: h) = π.JV1K ρ = JV2K ρ
BP1∧P2 ρ x = BP1 ρ x ∧BP2 ρ x

BP1∨P2 ρ x = BP1 ρ x ∨BP2 ρ x

B¬P ρ x = ¬(BP ρ x)

Lemma A.2. Let P e a predicate such that Γ `c P :P 1, ρ ∈ JΓK and A ∈ 2PH : then

JpKp ρ A = {x ∈ A | BP ρ x}

Proof. By straightforward induction on the structure of the typing derivation. �

For atomic computations there is a function fP that transforms the input elements:

Definition A.3. Let C be an atomic computation, such that Γ `c C :P 1 then
fC : JΓK→ PH ⇀ PH is defined as:

fP ρ x =

{
x if BP ρ x

⊥ otherwise
fV1←V2

ρ (π :: h) = π[JV1K ρ 7→ JV2K ρ] :: h
fdup ρ (π :: h) = π :: π :: h

Lemma A.4. let C be an atomic computation such that Γ `c C :P 1, then JCK ρ A =
return (λ()→ {fC ρ x | x ∈ A}) for all ρ ∈ JΓK and A ∈ 2PH .

Here it should be understood that if fC ρ is undefined on some element x, the element is
not included in the resulting set.

Proof. By case analysis on the structure of the atomic computation C. If C is a predicate,
the required follows from the definition of JCK ρ A and Lemma ??. If C is a modification or
duplication, the required follows immediately from the definition. �
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B RE-TRANSLATION OF PNK SEMANTICS
Smolka et al. [2017b] give denotational semantics for deterministic and probabilistic PNK
programs at the same time, by interpreting the same semantics in a different monad (the
identity monad and the monad of (sub)probability measures, respectively). We only concern
ourselves with the probabilistic semantics.
First note that they do not distinguish between ∧ and ; or ∨ and &, which we do. For

this reason we define J·KPNK as:

JCKPNK : 2PH → D(2PH )

JdropKPNK A = return ∅
JskipKPNK A = return A

Jf = nKPNK A = return ({π :: h ∈ A | π.f = n})
J¬P KPNK A = JP KPNK A>>=λB → return (B −A)

JP1 ∧ P2KPNK A = JP1KPNK A>>=JP2KPNK

JP1 ∨ P2KPNK A = JP1KPNK A>>=λB → JP2KPNK A>>=λC → return (B ∪ C)
Jf ← nKPNK A = return ({π[f 7→ n] :: h ∈ A | π :: h ∈ A})

JdupKPNK A = return ({π :: π :: h ∈ A | π :: h ∈ A})
JC1 ;C2KPNK A = JC1KPNK A>>=JC2KPNK

JC1 &C2KPNK A = JC1KPNK A>>=λB → JC2KPNK A>>=λC → return (B ∪ C)
JC1 ⊕ rC2KPNK A = r(JP1K A ) + (1− r)(JP2K A )

JC∗KPNK A =
⊔
n≥0

JCnKPNK A

C PROOFS
C.1 Lemma 5.1

Proof. Let M = {m1, . . . ,mn}. By induction on n, we show that ΞM is the least upper
bound of M .

Case Base n = 0
If n = 0, then M = ∅ and the statement is vacuously true.

Case Induction n+ 1
Observe that:

ΞM = Ξ{m1, . . . ,mn,mn+1} = Ξ{Ξ{m1, . . . ,mn},mn+1}

By induction, we know that Ξ{m1, . . . ,mn} is the least upper bound of {m1, . . . ,mn}. Hence,
we must only show that for any m1,m2 ∈ D(X), m1Ξm2 is the least upper bound of m1

and m2. Recall that D is a continuation monad, then we can proceed as follows (except
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where otherwise noted, the proof proceeds by continuity):

m1Ξm2

=m1>>=λx→ m2>>=λy → returnx t y
=λk → m1 (λx→ m2 (λy → k (x t y)))
=λk → m1 (λx→ m2 (λy → k x t k y))

=λk → m1 (λx→ m2 ((λy → k x)
∨

(λy → k y)))

=λk → m1 (λx→ m2 (λy → k x)︸ ︷︷ ︸
k x

tm2 (λy → k y)︸ ︷︷ ︸
m2 k

)

m2 is a probability distribution, hence,
∫

dm2 = 1 and η-reduction

=λk → m1 (λx→ k x tm2 k)

=λk → m1 ((λx→ k x)
∨

(λx→ m2 k))

=λk → m1 (λx→ k x)︸ ︷︷ ︸
m1 k

tm1 (λx→ m2 k)︸ ︷︷ ︸
m2 k

η-reduction and m1 is a probability distribution, hence,
∫

dm2 = 1

=λk → m1 k tm2 k

=(λk → m1 k) t (λk → m2 k)

�

C.2 Theorem 5.4
Proof. By induction on the structure of the typing derivation, performing case analysis

on the final rule application.
In what follows, let Γ `v V :S, Γ `c C :T , and ρ ∈ JΓK, such that ∀(x : Sx) ∈ Γ : ρ(x) ∈

FSx .

Case T-Var V = xi
xi : Si ∈ Γ

Γ `v xi :Si

By assumption, JxiK ρ = ρ(xi) ∈ FSi .

Case T-Unit V = unit
Γ `v unit :1

By assumption, JunitK ρ = ∈ {()} = J1K = F1.

Case T-Thunk V = thunk C
Γ `c C :T

Γ `v thunk C :T T
Now, Jthunk CK ρ = JCK ρ ∈ FT = FT T , by induction.

Case T-Header V = hi
Γ `v hi :H

Immediately: JhiK ρ = hi ∈ {hi, . . . , hk} = JHK = FH.

Case T-Lit V = i
Γ `v i :N

Immediately: JiK ρ = i ∈ N = JNK = FN.
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1:32 Alexander Vandenbroucke and Tom Schrijvers

Case Atomic Computations C = P or V1 ← V2 or dup
...

Γ `c C :P 1
By Lemma ??, we know that JCK ρ A = return (λ()→ {fC ρ x | x ∈ A}), then:

∫
g d(JCK ρ A)

Lemma ??

=

∫
g d(return (λ()→ {fC ρ x | x ∈ A}))∫
g d(return x) = g(x)

= g(λ()→ {fC ρ x | x ∈ A})
Since dom(λ()→ {fc ρ x | x ∈ A}) = {()}, χF (P 1)(λ()→ {fC ρ x | x ∈ A}) = 1

= χF (P 1)(λ()→ {fC ρ x | x ∈ A})g((λ()→ {fC ρ x | x ∈ A})∫
g d(return x) = g(x)

=

∫
χF (P 1) g d(return (λ()→ {fC ρ x | x ∈ A}))

Lemma ??

=

∫
χF (P 1) g d(JCK ρ A

Hence, JCK ρ ∈ FP 1.
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Case T-Seq C = C1 ;C2

Γ `c C1 :T1 Γ `c C2 :T2

Γ `c C :T2

∫
g d(JC1 ;C2K ρ A)

by definition

=

∫
g d

JC1K ρ A)>>=λµ→ JC2K ρ

 ⋃
x∈dom(µ)

µ(x)


∫

g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
µ

∫
g d

JC2K ρ

 ⋃
x∈dom(µ)

µ(x)

 d(JC1K ρ A)

by induction for Γ `c C2 :T2

=

∫
µ

∫
χF (T2) g d

JC2K ρ

 ⋃
x∈dom(µ)

µ(x)

 d(JC1K ρ A)

∫
g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
µ

∫
χF (T2) g d

JC1K ρ A)>>=λµ→ JC2K ρ

 ⋃
x∈dom(µ)

µ(x)


by definition

=

∫
µ

∫
χF (T2) g d(JC1 ;C2K ρ A)

Hence JC1 ;C2K ρ ∈ FT2
.
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1:34 Alexander Vandenbroucke and Tom Schrijvers

Case T-Par C = C1 &C2

Γ `c C1 :T Γ `c C2 :T

Γ `c C1 &C2 :

∫
g d(JC1 &C2K ρ A)

by definition

=

∫
g d(JC1K ρ A>>=λµ1 → JC2K ρ A>>=λµ2 → return (µ1

∨
µ2))∫

g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
µ1

∫
µ2

∫
g d(return (µ1

∨
µ2)) d(JC2K ρ A) d(JC1K ρ A)∫

g d(return x) = g(x)

=

∫
µ1

∫
µ2

g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)

by induction

=

∫
µ1

χF (T )(µ1)

∫
µ2

χF (T )(µ2) g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)

distributivity

=

∫
µ1

∫
µ2

χF (T )(µ1) χF (T )(µ2) g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)

dom(µ
∨

µn+1) = dom(µ1) ∪ dom(µ2),

then, µ1

∨
µ2 ∈ F (T ) ⇐⇒ µ, µ2 ∈ F (T )

and therefore, χF (T )(µ1)χF (T )(µ2) = χF (T )(µ1

∨
µ2).

=

∫
µ1

∫
µ2

χF (T )(µ1

∨
µ2) g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)∫

g d(return x) = g(x)

=

∫
µ1

∫
µ2

∫
χF (T )(µ1

∨
µ2) g d(return (µ1

∨
µ2)) d(JC2K ρ A) d(JC1K ρ A)∫

g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
χF (T )(µ1

∨
µ2) g d(JC1K ρ A>>=λµ1 → JC2K ρ A>>=λµ2 → return (µ1

∨
µ2))

by definition

=

∫
χF (T )(µ1

∨
µ2) g d(JC1 &C2K ρ A

Hence, JC1 &C2K ρ ∈ FT2
.
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Case T-Choice C = C1 ⊕r C2

Γ `c C1 :T Γ `c C2 :T

Γ `c C1 ⊕r C2 :

∫
g d(JC1 ⊕r C2K ρ A)

by definition

=

∫
g d(rJC1K ρ A+ (1− r)JC2K ρ A)

distributivity of addition, scalar multiplication

= r

∫
g d(JC1K ρ A) + (1− r)

∫
g d(JC2K ρ A))

by induction

= r

∫
χF (T ) g d(JC1K ρ A) + (1− r)

∫
χF (T ) g d(JC2K ρ A))

distributivity of addition, scalar multiplication

=

∫
χF (T ) g d(rJC1K ρ A+ (1− r)JC2K ρ A)

by definition

=

∫
χF (T ) g d(rJC1 ⊕r C2K ρ A)

Hence JC1 ⊕ rC2K ρ A ∈ FT .

Case T-Iter C = C1
∗ Γ `c C1 :P 1

Γ `c C1
∗ :P 1

∫
g d(JC1

∗K ρ A)

If µ : J1K ⇀ A, then µ : F1 ⇀ A and dom(µ) = {()} is finite. Hence µ ∈ F (P 1).

=

∫
χF (P 1) g d(JC1

∗K ρ A

Hence JC1
∗K ρ A ∈ FP 1.
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1:36 Alexander Vandenbroucke and Tom Schrijvers

Case T-Produce C = produce V
Γ `v V :S

Γ `c produce V :P S∫
g d(Jproduce V K ρ A)

by definition

=

∫
g d(return (λJV K ρ→ A))∫
g d(return x) = g(x)

= g(λJV K ρ→ A)

By induction JV K ρ ∈ FS , and dom(λJV K ρ→ A) = {JV K ρ} is finite.
Hence, λJV K ρ→ A ∈ F (P S).

= χF (P S)(λJV K ρ→ A) g(λJV K ρ→ A)∫
g d(return x) = g(x)

=

∫
χF (P S) g d(return (λJV K ρ→ A))

by definition

=

∫
χP S g d(Jproduce V K ρ A)

Hence, Jproduce V K ρ ∈ FP S .

Case T-Force C = force V
Γ `v V :T T

Γ `c force V :T∫
g d(Jforce V K ρ A)

by definition

=

∫
g d(JV K ρ A)

Γ `v V :T T , by inversion, V = thunk C′ where Γ `c C′ :T .

=

∫
g d(Jthunk C ′K ρ A)

by definition

=

∫
g d(JC ′K ρ A)

by induction

=

∫
χF (T ) g d(JC ′K ρ A)

by definition

=

∫
χF (T ) g d(Jforce V K ρ A)
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Hence, Jforce V K ρ ∈ FT .

Case T-Abs C = λx :S.C ′
x : S,Γ `c C ′ :T

Γ `c λX :S.C ′ :S → T

∫
g d(Jλx :S.C ′K ρ A)

by definition

=

∫
g d(return (λ(λv → JC ′K [x 7→ v]ρ)→ A))∫
g d(return x) = g(x)

= g(λ(λv → JC ′K [x 7→ v]ρ)→ A)

If v ∈ FS , then JC′K ρ ∈ FT by induction,

then, λ(λv → JC′K [x 7→ v]ρ)→ A ∈ FS → 2PH → FT , and

then, dom(λ(λv → JC′K [x 7→ v]ρ)→ A) = {λv → JC′K [x 7→ v]ρ} is finite.

=χF (S→T )(λ(λv → JC ′K [x 7→ v]ρ)→ A) g(λ(λv → JC ′K [x 7→ v]ρ)→ A)∫
g d(return x) = g(x)

=

∫
χF (S→T ) g d(return (λ(λv → JC ′K [x 7→ v]ρ)→ A))

by definition

=

∫
χF (S→T ) g d(Jλx :S.C ′K ρ A)

Hence, Jλx :S.C ′K ρ ∈ FS→T .
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1:38 Alexander Vandenbroucke and Tom Schrijvers

Case T-App C = C ′ V
Γ `c C :S → T Γ `v V :S

Γ `c C ′ V :T

∫
g d(JC ′ V K ρ A)

by definition

=

∫
g d(JC ′K ρ A>>=λµ→ Ξ{f (JV K ρ) µ(v) | v ∈ dom(µ)})∫
g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
µ

∫
g d(Ξ{f (JV K ρ) µ(v) | v ∈ dom(µ)}) d(JC ′K ρ A)

by induction

=

∫
µ

χF (S→T )(µ)

∫
d(Ξ{f (JV K ρ) µ(v) | v ∈ dom(µ)}) d(JC ′K ρ A)

By induction dom(µ) ⊆ FS→T . Then the required follows from Lemma ??.

=

∫
µ

∫
χF (T ) g d(Ξ{f (JV K ρ) µ(v) | v ∈ dom(µ)}) d(JC ′K ρ A))∫

g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
χF (T ) g d(JC ′K ρ A>>=λµ→ Ξ{f (JV K ρ) µ(v) | v ∈ dom(µ)})

by definition

=

∫
χF (T ) g d(JC ′ V K ρ A)

Hence, JC ′ V K ρ ∈ FT .
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Case T-To C = C1 to x.C2

Γ `c C1 :P S x : S,Γ `c C2 :T

Γ `c C1 to x.C2 :T

∫
g d(JC1 to x.C2K ρ A)

by definition

=

∫
g d(JC1K ρ A>>=λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)})∫
g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
µ

∫
g d(Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}) d(JC1K ρ A)

by induction

=

∫
µ

χF (P S)(µ)

∫
g d(Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}) d(JC1K ρ A)

Since µ ∈ F (P S), it follows that ∀v ∈ dom(µ) : v ∈ FS , then, by induction, JC2K [x 7→ v]ρ ∈ FT .

=

∫
µ

∫
χF (T ) g d(Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}) d(JC1K ρ A)∫

g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
χF (T ) g d(JC1K ρ A>>=λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)})

by definition

=

∫
χF (T ) g d(JC1 to x.C2K ρ A)

Hence, JC1 to x.C2K ρ ∈ FT . �

Lemma C.1. Let M = {m1, . . . ,mn} ⊆ JT K, such that
∫
f dmi =

∫
χF (T ) f dmi, for

i = 1, . . . , n; then

∫
f d(ΞM) =

∫
χF (T ) fd(ΞM)

Proof. By induction on n:
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1:40 Alexander Vandenbroucke and Tom Schrijvers

• n = 0

∫
g d(Ξ∅)

by definition,
∨
∅ = λx→ ⊥

=

∫
g d(return (λx→ ⊥))∫
g d(return x) = g(x)

=g(λx→ ⊥)
dom(()λx→ ⊥) is finite

=χF (T )(λx→ ⊥)g(λx→ ⊥)∫
g d(return x) = g(x)

=

∫
χF (T ) g d(return (λx→ ⊥))

by definition,
∨
∅ = λx→ ⊥

=

∫
χF (T ) g d(Ξ∅)
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• Induction∫
g d(Ξ{m1, . . . ,mn,mn+1})

by definition

=

∫
g d(Ξ{m1, . . . ,mn}>>=λµ→ mn+1>>=λµn+1 → return (µ

∨
µn+1))∫

g d(m>>=h) =

∫
x

∫
g d (h(x)) dm

=

∫
µ

∫
µn+1

∫
g d(return (µ

∨
µn+1)) dmn+1 d(Ξ{m1, . . . ,mn})∫

g d(return x) = g(x)

=

∫
µ

∫
µn+1

g(µ
∨
µn+1) dmn+1 d(Ξ{m1, . . . ,mn})

by induction and by assumption for mn+1

=

∫
µ

χF (T )(µ)

∫
µn+1

χF (T )(µn+1) g(µ
∨
µn+1) dmn+1 d(Ξ{m1, . . . ,mn})

distributivity

=

∫
µ

∫
µn+1

χF (T )(µ) χF (T )(µn+1) g(µ
∨
µn+1) dmn+1 d(Ξ{m1, . . . ,mn})

dom(µ
∨

µn+1) = dom(µ) ∪ dom(µn+1),

then, µ
∨

µn+1 ∈ F (T ) ⇐⇒ µ, µn+1 ∈ F (T )

and therefore, χF (T )(µ)χF (T )(µn+1) = χF (T )(µ
∨

µn+1).

=

∫
µ

∫
µn+1

χF (T )(µ
∨
µn+1) g(µ

∨
µn+1) dmn+1 d(Ξ{m1, . . . ,mn})

=

∫
χF (T ) g d(Ξ{m1, . . . ,mn,mn+1}

�

C.3 Theorem 5.7
Proof. By induction on the structure of the typing derivation, performing case analysis

on the final rule application.
In what follows, let Γ `v V :S, Γ `c C :T , and ρ ∈ JΓK, such that ∀(x : Sx) ∈ Γ : ρ(x) ∈

CSx .

Case T-Var V = xi
xi : Si ∈ Γ

Γ `v xi :Si

By assumption, JxiK ρ = ρ(xi) ∈ CSi
.

Case T-Unit V = unit Γ `v unit :1

JunitK ρ = () ∈ {()} = J1K = C1
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Case T-Header V = hi Γ `v hi :H

JhiK ρ = hi ∈ {h1, . . . , hn} ∈ JHK = CH

Case T-Lit V = n Γ `v n :N

JnK ρ = n ∈ N = JNK = CN

Case T-Thunk V = thunk C
Γ `c C :T

Γ `v thunk C :T T

Case Atomic Computations C = P or V1 ← V2 or dup
...

Γ `c C :P 1
By Lemma ??, we know that JCK ρ A = return (λ()→ {fC ρ x | x ∈ A}), then:

(1) We show that JCK ρ is continuous:

⊔
i≥0

JCK ρ Ai

=
⊔
i≥0

(return (λ()→ {fc(x) | x ∈ Ai}))

=return

∨
i≥0

(λ()→ {fc(x) | x ∈ Ai})


=return

λ()→ ⋃
i≥0

{fc(x) | x ∈ Ai}


=return

λ()→ {fc(x) | x ∈ ⋃
i≥0

Ai}


=JCK ρ

( ⋃
i≥0

Ai

)
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(2)

∫
g d (JCK ρ A)

by definition

=

∫
g d (return (λ()→ {fC(x) | x ∈ A}))∫
g d(return x) = g(x)

=g(λ()→ {fC(x) | x ∈ A})
dom(λ()→ {fC(x) | x ∈ A}) = C(1)
Thus, λ()→ {fC(x) | x ∈ A} ∈ CP 1

=χC(P 1)(λ()→ {fC(x) | x ∈ A}) g(λ()→ {fC(x) | x ∈ A})∫
g d(return x) = g(x)

=

∫
χC(P 1)g d (return (λ()→ {fC(x) | x ∈ A}))

by definition

=

∫
χC(P 1)g d (JCK ρ A)

Thus JCK ρ ∈ CP 1.

Case T-Seq C = C1 ;C2

Γ `c C1 :T1 Γ `c C2 :T2

Γ `c C :T2

(1) We show that JC1 ;C2K ρ A is continuous:

⊔
i≥0

JC1 ;C2K ρ Ai

=
⊔
i≥0

JC1K ρ Ai>>=λµ→ JC2K ρ
(⋃

x∈dom(µ)

µ(x)
)

continuity of >>=, assume λµ→ JC2K ρ
(⋃
x∈domµ

µ(x)
)

is continuous

=
⊔
i≥0

(JC1K ρ Ai)>>=λµ→ JC2K ρ
(⋃

x∈dom(µ)

µ(x)
)

=JC1K ρ
( ⋃

i≥0

Ai

)
>>=λµ→ JC2K ρ

(⋃
x∈dom(µ)

µ(x)
)

=JC1 ;C2K ρ
( ⋃
i≥0

Ai

)
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Moreover,

⊔
i≥0

JC2K ρ
(⋃

x∈dom(µi)

µi(x)
)

=JC2K ρ
(⋃

i≥0

x∈dom(µi)

µi(x)
)

=JC2K ρ
(⋃

i≥0

x∈dom(
∨

j≥0 µj)

µi(x)
)

=JC2K ρ
( ⋃
x∈dom(

∨
j≥0 µj)

( ∨
j≥0

µj

)
(x)

)

(2)

∫
g d(JC1 ;C2K ρ A)

=

∫
g d(JC1K ρ A>>=λµ→ JC2K ρ

⋃
x∈dom(µ)

µ(x))

=

∫
µ

∫
g d(JC2K ρ

⋃
x∈dom(µ)

µ(x)) d(JC1K ρ A

By induction on Γ `c C2 :T2.

=

∫
µ

∫
χCT2

g d(JC2K ρ
⋃

x∈dom(µ)

µ(x)) d(JC1K ρ A

=

∫
χCT2

g; d(JC1K ρ A>>=λµ→ JC2K ρ
⋃

x∈dom(µ)

µ(x))

∫
χCT2

g d(JC1 ;C2K ρ A)

Thus JC1 ;C2K ρ ∈ CT2
.

Case T-Par C = C1 &C2

Γ `c C1 :T Γ `c C2 :T

Γ `c C1 &C2 :
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(1) We show that JC1 &C2K ρ is continuous:⊔
i≥0

JC1 &C2K ρ Ai

=
⊔
i≥0

(
JC1K ρ Ai>>=λµ1 → JC2K ρ Ai>>=λµ2 → return (µ1

∨
µ2)

)
Continuity of >>= and return (µ1

∨
µ2) is continuous

=
⊔
i≥0

(JC1K ρ Ai)>>=λµ1 →
⊔
i≥0

(JC2K ρ Ai)>>=λµ2 → return (µ1

∨
µ2)

=JC1K ρ
( ⋃
i≥0

Ai

)
>>=λµ1 → JC2K ρ

( ⋃
i≥0

Ai

)
>>=λµ2 → return (µ1

∨
µ2)

=JC1 &C2K ρ
( ⋃
i≥0

)
(2) ∫

g d(JC1 &C2K ρ A)

=

∫
g d(JC1K ρ A>>=λµ1 → JC2K ρ A>>=λµ2 → return (µ1

∨
µ2)

=

∫
µ1

∫
µ2

g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)

=

∫
µ1

χC(T )(µ1)

∫
µ2

χC(T )(µ2)g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)

Induction on Γ `c C1 :T ,Γ `c C2 :T

=

∫
µ1

∫
µ2

χC(T )(µ1)χC(T )(µ2)g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)

If µ1, µ2 ∈ C(T ), then µ1

∨
µ2 ∈ C(T )

Hence χC(T )(µ1)χC(T )(µ2) = χC(T )(µ1)χC(T )(µ2)

=

∫
µ1

∫
µ2

χC(T )(µ1)χC(T )(µ2)χC(T )(µ1

∨
µ2)g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)

Induction on Γ `c C1 :T ,Γ `c C2 :T

=

∫
µ1

∫
µ2

χC(T )(µ1

∨
µ2)g(µ1

∨
µ2) d(JC2K ρ A) d(JC1K ρ A)

=

∫
χC(T )g d(JC1K ρ A>>=λµ1 → JC2K ρ A>>=λµ2 → return (µ1

∨
µ2))

=

∫
χC(T )g d(JC1 &C2K ρ A)

Thus JC1C⊕2K ρ ∈ CT .

Case T-Choice C = C1 ⊕r C2

Γ `c C1 :T Γ `c C2 :T

Γ `c C1 ⊕r C2 :
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(1) We show that JC1 ⊕ C2K ρ is continuous.⊔
i≥0

JC1 ⊕ C2K ρ Ai

=
⊔
i≥0

(r(JC1K ρ Ai) + (1− r)(JC2K ρ Ai))

= r
⊔
i≥0

(JC1K ρ Ai) + (1− r)
⊔
i≥0

(JC2K ρ Ai))

= r(JC1K ρ
( ⋃
i≥0

Ai

)
) + (1− r)(JC2K ρ

( ⋃
i≥0

Ai

)
)

=JC1 ⊕ C2K ρ
( ⋃
i≥0

Ai

)

(2) ∫
g d(JC1 ⊕r C2K ρ A)

= r

∫
g d(JC1K ρ A) + (1− r)

∫
g d(JC2K ρ A)

by induction

= r

∫
χC(T )g d(JC1K ρ A) + (1− r)

∫
χC(T )g d(JC2K ρ A)

=

∫
χC(T )g d

(
r(JC1K ρ A) + (1− r)(JC2K ρ A)

)
=

∫
χC(T )g d

(
JC1 ⊕r C2K ρ A)

Thus, JC1 ⊕ C2K ρ ∈ CT .

Case T-Iter C = C1
∗ Γ `c C1 :P 1

Γ `c C1
∗ :P 1

(1) We show that JC1
∗K ρ is continuous:⊔

i≥0

(JC1
∗K ρ Ai)

=
⊔
i≥0

(
⊔
n≥0

JCn
1 K ρ Ai)

=
⊔
n≥0

JCn
1 K ρ

( ⋃
i≥0

Ai

)
=JC1

∗K ρ
( ⋃
i≥0

Ai

)
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(2) ∫
g d(JC1

∗K ρ A)

=

∫
g d(

⊔
n≥0

JCn
1 K ρ A)

C1 = J1K = {()}, then clearly µ ∈ J1K ⇀ 2PH = C(P 1)

=

∫
χC(P 1)g d(

⊔
n≥0

JCn
1 K ρ A)

=

∫
χC(P 1)g d(JC1

∗K ρ A)

Thus JCK ρ ∈ CP 1.

Case T-Produce C = produce V
Γ `v V :S

Γ `c produce V :P S

(1) We show that Jproduce V K ρ is continuous.⊔
i≥0

Jproduce V K ρ Ai

=
⊔
i≥0

return (λJV K ρ→ Ai)

=return
∨
i≥0

(λJV K ρ→ Ai)

=return (λJV K ρ→
⋃
i≥0

Ai)

=Jproduce V K ρ
( ⋃
i≥0

Ai

)
(2) ∫

g d(Jproduce V K ρ A

=

∫
g d(return (λJV K ρ→ A))

=g(λJV K ρ→ A)

Γ `c V :S, by induction V ∈ CS
=χC(P S)(λJV K ρ→ A)g(λJV K ρ→ A)

=

∫
χC(P S)g d(return (λJV K ρ→ A))

=

∫
χC(P S)g d(Jproduce V K ρ A)
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Thus Jproduce V K ρ ∈ CP S .

Case T-Force C = force V
Γ `v V :T T

Γ `c force V :T

Jforce V K ρ = JV K ρ ∈ CT T = CT

where the first and last equality are by definition, the middle one is by induction.

Case T-Abs C = λx :S.C ′
x : S,Γ `c C ′ :T

Γ `c λX :S.C ′ :S → T

(1) We show that Jλx :S.C ′K ρ is continuous:⊔
i≥0

Jλx :S.CK ρ Ai

=
⊔
i≥0

return (λ(λv → JC ′K [x 7→ v]ρ)→ Ai)

=return
∨
i≥0

(λ(λv → JC ′K [x 7→ v]ρ)→ Ai)

=return ((λ(λv → JC ′K [x 7→ v]ρ)→
⋃
i≥0

Ai)

=Jλx :S.CK ρ
( ⋃
i≥0

Ai

)

(2) ∫
g d(Jλx :S.C ′K ρ A)

=

∫
g d(return λ(λv → JC ′K [x 7→ v]ρ)→ A)

=g(λ(λv → JC ′K [x 7→ v]ρ )→ A)

If v ∈ CS , then JC′K [x 7→ v]ρ ∈ CT , by induction.

Hence, (λv → JC′K [x 7→ v]ρ) ∈ CS → CT
=χC(S→T )g(λ(λv → JC ′K [x 7→ v]ρ )→ A)g(λ(λv → JC ′K [x 7→ v]ρ )→ A)

=

∫
χC(S→T )g d(return λ(λv → JC ′K [x 7→ v]ρ)→ A)

=

∫
χC(S→T )g d(Jλx :S.C ′K )

Thus, Jλx :S.C ′K ρ ∈ CS→T .

Case T-App C = C ′ V
Γ `c C :S → T Γ `v V :S

Γ `c C ′ V :T
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(1) We show that JC ′ V K ρ is continuous:

⊔
i≥0

JC ′ V K ρ Ai

=
⊔
i≥0

(JC ′K ρ Ai>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)})

continuity of >>=, assume λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)} is continuous

=
⊔
i≥0

(JC ′K ρ Ai)>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)})

=JC ′K ρ
( ⋃
i≥0

Ai

)
>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)})

=JC ′ V K ρ
( ⋃
i≥0

Ai

)

Moreover,

⊔
i≥0

Ξ{f (JV K ρ) µi(f) | f ∈ dom(µi)}

=
⊔
i≥0

f∈dom(µi)

(f (JV K )ρ) µi(f))

=
⊔
i≥0

f∈dom(
∨

j≥0 µj)

(f (JV K )ρ) µi(f))

=
⊔

f∈dom(
∨

i≥0 µi)

f (JV K )ρ) (
⋃
i≥0

µi(f))


=

⊔
f∈dom(

∨
i≥0 µi)

f (JV K )ρ) (
∨
i≥0

µi)(f)


= Ξ{f (JV K ρ) (

∨
i≥0

µi) | f ∈ dom(
∨
i≥0

µi)}

Discharging the assumption above.
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(2)

∫
g d(JC ′ V K ρ A)

=

∫
g d(JC ′K ρ A>>=λµ→ Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)})

=

∫
µ

∫
g d(Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}) d(JC ′K ρ A)

by induction

=

∫
µ

χC(S→T )(µ)

∫
g d(Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}) d(JC ′K ρ A)

µ ∈ C(S → T ), then f JV K ρ ∈ CT , thus
∫

g d(f JV K ρA) =

∫
χC(T )g d(f JV K ρA)

Now apply Lemma ??.

=

∫
µ

χC(S→T )(µ)

∫
χC(T )g d(Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}) d(JC ′K ρ A)

=

∫
µ

∫
χC(T )g d(Ξ{f (JV K ρ) µ(f) | f ∈ dom(µ)}) d(JC ′K ρ A)

=

∫
χC(T )gd(JC ′ V K ρ A)

Thus, JC ′ V K ρ ∈ CT .

Case T-To C = C1 to x.C2

Γ `c C1 :P S x : S,Γ `c C2 :T

Γ `c C1 to x.C2 :T

(1) We show that JC1 to x.C2K ρ is continuous:

⊔
i≥0

(JC1 to x.C2K ρ Ai)

=
⊔
i≥0

(JC1K ρ Ai>>=λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)})

continuity of >>=, assume λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)} is continuous.

=
⊔
i≥0

(JC1K ρ Ai)>>=λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}

by induction

=JC1K ρ
( ⋃
i≥0

Ai

)
>>=λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}
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Moreover, ⊔
i≥0

Ξ{JC2K [x 7→ v]ρ µi(v) | v ∈ dom(µi)}

=
⊔
i≥0

f∈dom(µi)

JC2K [x 7→ v]ρ µi(v)

=
⊔
i≥0

f∈dom(
∨

j≥0 µj)

JC2K [x 7→ v]ρ µi(v)

=
⊔

f∈dom(
∨

j≥0 µj)

JC2K [x 7→ v]ρ
( ⋃
i≥0

µi(v)
)

=
⊔

f∈dom(
∨

j≥0 µj)

JC2K [x 7→ v]ρ
( ∨
i≥0

µi

)
(v)

=Ξ

JC2K [x 7→ v]ρ
( ∨
i≥0

µi

)
(v) | v ∈ dom(

( ∨
i≥0

µi

)
)


This discharges the above assumption.

(2)∫
g d(JC1 to x.C2K ρ A)

=

∫
g d(JC1K ρ A>>=λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)})

=

∫
µ

∫
g d(Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}) d(JC1K ρ A)

by induction

=

∫
µ

χC(P S)(µ)

∫
g d(Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}) d(JC1K ρ A)

By induction JC2K [x 7→ v]ρ ∈ CT , thus
∫

g d(JC2K [x 7→ v]ρ A) =

∫
χC(T )g d(JC2K [x 7→ v]ρ A)

Now apply Lemma ??.

=

∫
µ

χC(P S)(µ)

∫
χC(T )g d(Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}) d(JC1K ρ A)

=

∫
µ

∫
χC(T )g d(Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}) d(JC1K ρ A)

Thus JC1 to x.C2K ρ ∈ CT . �

Lemma C.2. Let M = {m1, . . . ,mn} ⊆ JT K, such that
∫
f dmi =

∫
χC(T ) f dmi, for

i = 1, . . . , n; then ∫
f d(ΞM) =

∫
χC(T ) fd(ΞM)
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Proof.

ΞM

=

∫
µ1

· · ·
∫
µn

∫
g d(return (µ1

∨
· · ·µn)) dmn · · · dm1

=

∫
µ1

χC(T )(µ1) · · ·
∫
µn

χC(T )(µn)

∫
g d(return (

n∨
i=1

µi)) dmn · · · dm1

If µ1, . . . , µn ∈ C(T ), then µ1

∨
· · ·

∨
µn ∈ C(T ).

Since dom(µ1

∨
· · ·

∨
µn) = dom(µ1) ∪ · · · ∪ dom(µn) ⊆ CS or CS → CT .

=

∫
µ1

χC(T )(µ1) · · ·
∫
µn

χC(T )(µn)

∫
χC(T ) g d(return (

n∨
i=1

µi)) dmn · · · dm1

=

∫
µ1

· · ·
∫
µn

∫
χC(T ) g d(return (

n∨
i=1

µi)) dmn · · · dm1

�

C.4 Theorem 5.8
Recall the definition of PNK semantics given in Appendix ??. To prove Theorem 5.8, we
actually prove the following lemmas:

Lemma C.3. Let P be a closed predicate. Then for all A ∈ 2PH :

return (JP Kp () A) = JP KPNK A

Proof. By induction on the structure of predicates:

Cases drop,skip, tests f = n. : straightforward by definition.

Case ¬P .

return (J¬P Kp () A) = return (A− JP Kp () A)

= return (JP Kp () A)>>=λB → return (A−B)

= JP KPNK A>>=λB → return (A−B)

= J¬P KPNK A

Case P1 ∧ P2.

return (JP1 ∧ P2Kp () A) = return {h ∈ A | BP1∧P2
() h}

= return {h ∈ A | BP1
() h and BP2

() h}
= return {h ∈ {h ∈ A | BP1

() h} | BP2
() h}

= return {h ∈ A | BP1 () h}>>=λA′ → return {h ∈ A′ | BP2 () h}
= JP1KPNK A>>=λA′ → JP2KPNK A′

= JP1KPNK A>>=JP2KPNK
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Case P1 ∨ P2.

return (JP1 ∨ P2Kp () A)

= return (JP1Kp () A ∪ JP2Kp () A)

= return (JP1Kp () A)>>=λB → return (JP2Kp () A)>>=λC → return (B ∪ C)
= JP1KPNK A>>=λB → JP2KPNK A>>=λC → return (B ∪ C)
= JP1 ∨ P2KPNK A

�

Lemma C.4. Let C be a closed probabilistic computation. Define ψ(m) = m>>=λµ →
return

(
µ
(
()
))

. Then for all A ∈ 2PH :

ψ(JCK () A) = JCKPNK A

Proof. By induction on the structure of probabilistic computations. Note that we have
the following computation rules for ψ:

ψ(return (λ()→ A)) = return A

ψ(m1>>= f) = m1>>=(ψ ◦ f)
ψ(r ·m) = r · ψ(m)

ψ(m1 +m2) = ψ(m1) + ψ(m2)

ψ(
⊔
i≥0

mi) =
⊔
i≥0

ψ(mi)

Atomic Computations. For atomic computations C, we have

ψ(JCK () A) = ψ(return (λ()→ {fC () h | h ∈ A}))
= return {fC () h | h ∈ A}
Immediate for f ← n and dup, for predicates this follows from Lemma ??
= JCKPNK A

Sequential composition.

ψ (JC1 ;C2K () A)

=ψ

JC1K () A>>=λµ→ JC2K ()
(⋃

x∈dom(µ)

µ(x)
)

=ψ
(
JC1K () A>>=λµ→ JC2K () µ

(
()
))

=ψ
(
JC1K () A>>=λµ→ return µ

(
()
)
>>=JC2K ()

)
=ψ (ψ(JC1K () A)>>=JC2K () )

=ψ(JC1K () A)>>=(ψ ◦ JC2K () )

=JC1KPNK A>>=JC2KPNK
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Parallel composition.

ψ (JC1 &C2K () A)

=ψ
(
JC1K () A>>=λµ1 → JC2K () A>>=λµ2 → return (µ1

∨
µ2)

)
=ψ (JC1K () A>>=λµ1 → JC2K () A>>=λµ2 → return (λ()→ µ1(()) ∪ µ2(())))

=JC1K () A>>=λµ1 → JC2K () A>>=λµ2 → return (µ1(()) ∪ µ2(()))

=JC1K () A>>=λµ1 → return µ1(())>>=λA1 →
JC2K () A>>=λµ2 → return µ2(())>>=λA2 → return (A1 ∪A2)

=ψ (JC1K () A)>>=λA1 → ψ (JC2K () A)>>=λA2 → return (A1 ∪A2)

=JC1KPNK A>>=λA1 → JC2KPNK A>>=λA2 → return (A1 ∪A2)

=JC1 &C2KPNK ()A

Probabilistic Choice.

ψ(JC1 ⊕r C2K () A)

=ψ (rJC1K () A+ (1− r)(JC2K () A))

=r · ψ (JC1K () A) + (1− r) · ψ (JC2K () A)

=r(JC1KPNK A) + (1− r)(JC2KPNK A)

=JC1 ⊕r C2KPNK A)

Iteration.

ψ(JC∗K () A)

=ψ(
⊔
n≥0

(JCnK () A)

=
⊔
n≥0

ψ(JCnK () A)

=
⊔
n≥0

JCnKPNK A

=JC∗KPNK A

�

C.5 Theorem 6.2
Proof. We prove the following slightly stronger statement: Let R1, R2 be terminals

such that 
c R1 : T , 
c R2 :P 1 and R1  R2, then JR1K = JR2K if T = P 1, otherwise
JR2K = JR1 ; skipK .
We proceed by induction on the elaboration relation. In the first three cases of  , the

result is immediate.
In what follows, assume R11  R21 and R12  R22, 
c R11 :T1, 
c R11 :T2,
If R11 ;R12  R21 ;R22, then JR21 ;R22K = JR11 ;R22K, by induction independently of T1.

Then either JR21 ;R22K = JR11 ;R12K or JR21 ;R22K = JR11 ;R12 ; skipK according to T2.
If R11 &R12  R21 &R22, then the required follows immediately by induction, inversion

and the definition of the denotational semantics.
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If R11⊕R12  R21⊕R22, then Note that T1 = T2, the required result then either follows
immediately, by induction, or by induction and distributivity of ; over ⊕.
Assume R1  R2. It is easy to show by induction on n that if JR1K = JR2K, then

JRn
1 K = JRn

2 K for all n. It then follows that JR1
∗K = JR2

∗K
The penultimate case follows by inversion and the definition of the denotational semantics.

The final case is immediate after inversion. �

C.6 Theorem 6.4
Proof. The proof proceeds by induction on the structure of the evaluation rules and

case analysis on the final rule.
In cases E-Pred, E-Mod, E-Dup, E-Prod and E-Abs, C is a terminal. By reflection,

C = R, Hence JCK = JRK.
In cases E-Seq, E-Par, E-Choice, the required follows by unfolding the definition and

applying the induction hypothesis.

Case E-Iter. Note that

JC∗K ρ A =
⊔
n≥0

JCnK ρ A andJR∗K ρ A =
⊔
n≥0

JRnK ρ A

Then we we need to show that ∀n ≥ 0 : JCnK = JRnK . This follows by induction on n.

Case E-Force.

Jforce thunk CK ρ A = Jthunk CK ρ A = JCK ρ A = JRK ρ A

Case E-AppAbs.

JC1 V K ρ A
by definition

=JC1K ρ A>>=λµ→ Ξ{f (JV K ρ ) µ(f) | f ∈ dom(µ)}
by induction

=Jλx :S.C11K ρ A>>=λµ→ Ξ{f (JV K ρ ) µ(f) | f ∈ dom(µ)}
by definition

=return (λ(λv → JC11K [x 7→ v]ρ )→ A)>>=λµ→ Ξ{f (JV K ρ ) µ(f) | f ∈ dom(µ)}
by definition

=Ξ{(λv → JC11K [x 7→ v]ρ ) (JV K ρ) A}
β-reduction

=JC11K [x 7→ (JV K ρ)]ρ A
Lemma ??

=J[x 7→ V ]C11K ρ A
by induction

=JRK ρ A
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Case E-AppSeq.

JC1 V K ρ A
by definition

=JC1K ρ A>>=λµ→ Ξ{f (JV K ρ ) µ(f) | f ∈ dom(µ)}
by induction

=JR11 ;R12K ρ A>>=λµ→ Ξ{f (JV K ρ ) µ(f) | f ∈ dom(µ)}
by definition

=JR11K ρ A>>=λµ1 → JR12K ρ
(⋃

x∈dom(µ1)

µ1(x)
)
>>=λµ→ Ξ{f (JV K ρ ) µ(f) | f ∈ dom(µ)}

associativity of >>=, by definition

=JR11K ρ A>>=λµ1 → JR12 V K ρ
(⋃

x∈dom(µ1)

µ1(x)
)

by induction

=JR11K ρ A>>=λµ1 → JR2K ρ
(⋃

x∈dom(µ1)

µ1(x)
)

by definition
=JR11 ;R2K ρ A

Case E-AppChoice.

JC1 V K ρ A
by definition

=JC1K ρ A>>=λµ→ Ξ{f (JV K ρ ) µ(f) | f ∈ dom(µ)}
by induction

=JR11 ⊕R12K ρ A>>=λµ→ Ξ{f (JV K ρ ) µ(f) | f ∈ dom(µ)}
=
(
r(JR11K ρ A) + (1− r)(JR12K ρ A)

)
>>=λµ→ Ξ{f (JV K ρ ) µ(f) | f ∈ dom(µ)}

distributivity

=r(JR11K ρ A)>>=λµ→ Ξ{f (JV K ρ ) µ(f) | f ∈ dom(µ)}
+ (1− r)(JR12K ρ A)

)
>>=λµ→ Ξ{f (JV K ρ ) µ(f) | f ∈ dom(µ)}

by definition

=r(JR11 V K ρ A) + (1− r)(JR12 V K ρ A)
by induction

=r(JR1K ρ A) + (1− r)(JR2K V ρA)

by definition

=JR1 ⊕R2K ρ A
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Case E-ToProduce.

JC1 to x.C2K ρ A
by definition

=JC1K ρ A>>=λµ→ Ξ{JC2K [x 7→ v] µ(v) | v ∈ dom(µ)}
by induction

=Jproduce V K ρ A>>=λµ→ Ξ{JC2K [x 7→ v] µ(v) | v ∈ dom(µ)}
by definition

=return (λJV K ρ→ A)>>=λµ→ Ξ{JC2K [x 7→ v] µ(v) | v ∈ dom(µ)}
left-unit of >>=

=Ξ{JC2K [x 7→ (JV K ρ)]ρ A}
=JC2K [x 7→ (JV K ρ)]ρ A

by Lemma ??
=J[x 7→ V ]C2K ρ A

by induction
=JR2K ρ A

Case E-ToSeq. like E-AppSeq

Case E-ToChoice. like E-AppChoice

Case E-ToIter.

JC1 to x.C2K ρ A
=JC1K ρ A>>=λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}
=JR1

∗K ρ A>>=λµ→ Ξ{JC2K [x 7→ v]ρ µ(v) | v ∈ dom(µ)}
by inversion

=JR1
∗K ρ A>>=λµ→ JC2K [x 7→ ()]ρ µ(())

Lemma ??

=JR1
∗K ρ A>>=λµ→ J[x 7→ unit ]C2K ρ µ(())

=JR1
∗K ρ A>>=λµ→ J[x 7→ unit ]C2K ρ

(⋃
x∈dom(µ)

µ(x)
)

by induction

=JR1
∗K ρ A>>=λµ→ JR2K ρ

(⋃
x∈dom(µ)

µ(x)
)

by definition

=JR1
∗ ;R2K ρ A

Case E-ToPar. Note that the inversion for Γ 
c C1 &C2 :T says that T = P 1. Then
the argument proceeds analogously to E-ToIter. �
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Lemma C.5. Let V, V̂ be a values and C be a computation such that x : Ŝ,Γ `v V :S,
Γ `v V̂ : Ŝ and x : Ŝ,Γ `c C :T . Let ρJΓK then

JV K [x 7→ (JV̂ K ρ)]ρ = J[x 7→ V̂ ]V K ρ

JCK [x 7→ (JV̂ K ρ)]ρ = J[x 7→ V̂ ]CK ρ

Proof. By induction on the structure of the typing derivation. We can ignore T-Unit,
T-Header, T-Lit, T-Skip,T-Drop,T-Dup, since they don’t contain any variables.

Case T-Thunk V = thunk C
Γ `c C :T

Γ `v thunk C :T T
Jthunk CK [x 7→ JV̂ K ρ] = JCK [x 7→ JV̂ K ρ] = J[x 7→ V̂ ]CK ρ = J[x 7→ V̂ ]thunk CK ρ

Case Atomic Computations C = P or V1 ← V2 or dup
...

Γ `c C :P 1
For predicates we can prove:
• Negation
B¬P [x 7→ JV̂ K ρ]ρ = ¬BP [x 7→ JV̂ K ρ]ρ = ¬B[x 7→V̂ ]P ρ = B¬[x 7→V̂ ]P ρ = B[x 7→V̂ ]¬P ρ

• Disjunction
BP1∨P2 [x 7→ JV̂ K ρ]ρ

=BP1
[x 7→ JV̂ K ρ]ρ or BP2

[x 7→ JV̂ K ρ]ρ
=B[x 7→V̂ ]P1

ρ or B[x7→V̂ ]P2
ρ

=B[x 7→V̂ (P1∨P2)
ρ

And similar for T-Conj
• Guard

BV1=V2 ([x 7→ JV̂ K ]ρ) (π :: h)

=π.JV1K [x 7→ JV̂ K ]ρ = JV2K [x 7→ JV̂ K ]ρ

=π.J[x 7→ V̂ ]V1K ρJ[x 7→ V̂ ]V2K ρ
=B[x7→V̂ ]V1=V2

ρ (pi :: h)

Hence, BP [x 7→ JV̂ K ρ]ρ = B[x 7→V̂ ]P ρ, and

fP [x 7→ JV̂ K ρ]ρ h =

{
h ifBP [x 7→ JV̂ K ρ]ρ h
⊥ otherwise

=

{
h ifB[x 7→V̂ ]P ρ h

⊥ otherwise
= f[x 7→V̂ ]P ρ h

For T-Mod:
fV1←V2

[x 7→ JV̂ K ρ]ρ (π :: h) = π[JV1K [x 7→ JV̂ K ρ]ρ 7→ JV2K [x 7→ JV̂ K ρ]ρ] :: h

= π[J[x 7→ V̂ ]V1K ρ 7→ J[x 7→ V̂ ]V2K ρ] :: h
= f[x 7→V̂ ]V1←V2

ρ (π :: h)
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Thus we can conclude that for an atomic computation C,

JCK [x 7→ JV̂ K ρ]ρ A = return (λ()→ {fC [x 7→ JV̂ K ρ]ρ h | h ∈ A})
= return (λ()→ {f[x7→V̂ ]C ρ h | h ∈ A})

= J[x 7→ V̂ C]K ρ A

Case T-Seq C = C1 ;C2

Γ `c C1 :T1 Γ `c C2 :T2

Γ `c C :T2

JC1 ;C2K [x 7→ JV̂ K ρ]ρ A = JC1K [x 7→ JV̂ K ρ]ρ A>>=λµ→ JC2K [x 7→ JV̂ K ρ]ρ
⋃

y∈dom(µ)

µ(y)

by induction

= J[x 7→ V̂ ]C1K ρ A>>=λµ→ J[x 7→ V̂ ]C2K ρ
⋃

y∈dom(µ)

µ(y)

= J[x 7→ JV̂ K ](C1 ;C2)K ρ A

Case T-Par C = C1 &C2

Γ `c C1 :T Γ `c C2 :T

Γ `c C :T

JC1 ;C2K [x 7→ JV̂ K ρ]ρ A

= JC1K [x 7→ JV̂ K ρ]ρ A>>=λµ1 → JC2K [x 7→ JV̂ K ρ]ρ A>>=λµ2 → return (µ1

∨
µ2)

by induction

= J[x 7→ V̂ ]C1K ρ A>>=λµ1 → J[x 7→ V̂ ]C2K ρ A>>=λµ2 → return (µ1

∨
µ2)

= J(C1 &C2)[x 7→ V̂ ]K ρ A

Case T-Choice C = C1 ⊕ C2

Γ `c C1 :T Γ `c C2 :T

Γ `c C :T

JC1 ⊕ C2K [x 7→ JV̂ K ρ]ρ A

= rJC1K [x 7→ JV̂ K ρ]ρ A+ (1− r)(JC2K [x 7→ JV̂ K ρ]ρ A)

= rJ[x 7→ V̂ ]C1K ρ A+ (1− r)(J[x 7→ V̂ ]C2K ρ A)

Case T-Produce C = produce V
Γ `v V :S

Γ `c produce V :T

Jproduce V K [x 7→ JV̂ K ρ]ρ A

= return (λJV K [x 7→ JV̂ K ρ]ρ→ A) = return (λJ[x 7→ V̂ ]V K ρA→)

= J[x 7→ V̂ ]produce V K ρ A
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Case T-Force C = force V
Γ `v V :T T

Γ `c force V :T

Jforce V K [x 7→ JV̂ K ρ]ρ A

= JV K [x 7→ JV̂ K ρ]ρ A

= J[x 7→ V̂ ]V K ρ A

= J[x 7→ V̂ ](force V )K ρ A

Case T-Abs C = λx :S.C ′
x : S,Γ `c C ′ :T

Γ `c λX :S.C ′ :S → T

Jλy :S.C ′K [x 7→ JV̂ K ρ]ρ A

= return (λλv → JC ′K [y 7→ v, x 7→ JV̂ K ρ]ρA→)

= return (λλv → J[x 7→ V̂ ]C ′K [y 7→ v]ρA→)

= J[x 7→ V̂ ](λy :S.C ′)K ρ A

Case T-Iter C = C1
∗ Γ `c C1 :P 1

Γ `c C1
∗P 1 :

JC1
∗K [x 7→ JV̂ K ]ρ A

=
⊔
n≥0

JCn
1 K [x 7→ JV̂ K ]ρ A

=
⊔
n≥0

J[x 7→ V̂ ]Cn
1 K ρ A

= J[x 7→ V̂ ](C1
∗)K ρ A

Case T-App C = C ′ V
Γ `c C :S → T Γ `v V :S

Γ `c C ′ V :T

JC ′ V K [x 7→ JV K ρ]ρ A

= JC ′K [x 7→ JV K ρ]ρ A>>=λµ→ Ξ{f JV K [x 7→ JV̂ K ρ]ρ µ(f) | f ∈ dom(µ)}

= J[x 7→ V̂ ]C ′K ρ A>>=λµ→ Ξ{f J[x 7→ V̂ ]V K ρ µ(f) | f ∈ dom(µ)}

= J[x 7→ V̂ ]C ′ V K ρ A
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Case T-To C = C1 to y.C2

Γ `c C1 :P S y : S,Γ `c C2 :T

Γ `c C1 to y.C2 :T

JC1 to y.C2K [x 7→ JV K ρ]ρ A
= JC1K [x 7→ JV K ρ]ρ A>>=λµ→ Ξ{JC2K [y 7→ v, x 7→ JV K ρ]ρ µ(v) | v ∈ dom(µ)}

= J[x 7→ V̂ ]C1K ρ A>>=λµ→ Ξ{J[x 7→ V̂ ]C2K [y 7→ v]ρ µ(v) | v ∈ dom(µ)}

= J[x 7→ V̂ ](C1 to y.C2)K ρ A

�

Since Γ 
v V :S implies Γ `v V :S and Γ 
c C :T implies Γ `c C :T , it follows that:

Lemma C.6. Let V, V̂ be a values and C be a computation such that x : Ŝ,Γ 
v V :S,
Γ 
v V̂ : Ŝ and x : Ŝ,Γ 
c C :T . Let ρJΓK then

JV K [x 7→ (JV̂ K ρ)]ρ = J[x 7→ V̂ ]V K ρ

JCK [x 7→ (JV̂ K ρ)]ρ = J[x 7→ V̂ ]CK ρ
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